xgboost/tests/cpp/helpers.h

203 lines
6.6 KiB
C++

/*!
* Copyright 2016-2019 XGBoost contributors
*/
#ifndef XGBOOST_TESTS_CPP_HELPERS_H_
#define XGBOOST_TESTS_CPP_HELPERS_H_
#include <iostream>
#include <fstream>
#include <cstdio>
#include <string>
#include <vector>
#include <sys/stat.h>
#include <sys/types.h>
#include <gtest/gtest.h>
#include <xgboost/base.h>
#include <xgboost/objective.h>
#include <xgboost/metric.h>
#include <xgboost/predictor.h>
#include <xgboost/generic_parameters.h>
#include "../../src/common/common.h"
#if defined(__CUDACC__)
#define DeclareUnifiedTest(name) GPU ## name
#else
#define DeclareUnifiedTest(name) name
#endif
#if defined(__CUDACC__)
#define NGPUS 1
#else
#define NGPUS 0
#endif
bool FileExists(const std::string& filename);
int64_t GetFileSize(const std::string& filename);
void CreateSimpleTestData(const std::string& filename);
void CreateBigTestData(const std::string& filename, size_t n_entries);
void CheckObjFunction(xgboost::ObjFunction * obj,
std::vector<xgboost::bst_float> preds,
std::vector<xgboost::bst_float> labels,
std::vector<xgboost::bst_float> weights,
std::vector<xgboost::bst_float> out_grad,
std::vector<xgboost::bst_float> out_hess);
void CheckRankingObjFunction(xgboost::ObjFunction * obj,
std::vector<xgboost::bst_float> preds,
std::vector<xgboost::bst_float> labels,
std::vector<xgboost::bst_float> weights,
std::vector<xgboost::bst_uint> groups,
std::vector<xgboost::bst_float> out_grad,
std::vector<xgboost::bst_float> out_hess);
xgboost::bst_float GetMetricEval(
xgboost::Metric * metric,
xgboost::HostDeviceVector<xgboost::bst_float> preds,
std::vector<xgboost::bst_float> labels,
std::vector<xgboost::bst_float> weights = std::vector<xgboost::bst_float> ());
namespace xgboost {
bool IsNear(std::vector<xgboost::bst_float>::const_iterator _beg1,
std::vector<xgboost::bst_float>::const_iterator _end1,
std::vector<xgboost::bst_float>::const_iterator _beg2);
/*!
* \brief Linear congruential generator.
*
* The distribution defined in std is not portable. Given the same seed, it
* migth produce different outputs on different platforms or with different
* compilers. The SimpleLCG implemented here is to make sure all tests are
* reproducible.
*/
class SimpleLCG {
private:
using StateType = int64_t;
static StateType constexpr default_init_ = 3;
static StateType constexpr default_alpha_ = 61;
static StateType constexpr max_value_ = ((StateType)1 << 32) - 1;
StateType state_;
StateType const alpha_;
StateType const mod_;
StateType const seed_;
public:
SimpleLCG() : state_{default_init_},
alpha_{default_alpha_}, mod_{max_value_}, seed_{state_}{}
/*!
* \brief Initialize SimpleLCG.
*
* \param state Initial state, can also be considered as seed. If set to
* zero, SimpleLCG will use internal default value.
* \param alpha multiplier
* \param mod modulo
*/
SimpleLCG(StateType state,
StateType alpha=default_alpha_, StateType mod=max_value_)
: state_{state == 0 ? default_init_ : state},
alpha_{alpha}, mod_{mod} , seed_{state} {}
StateType operator()();
StateType Min() const;
StateType Max() const;
};
template <typename ResultT>
class SimpleRealUniformDistribution {
private:
ResultT const lower;
ResultT const upper;
/*! \brief Over-simplified version of std::generate_canonical. */
template <size_t Bits, typename GeneratorT>
ResultT GenerateCanonical(GeneratorT* rng) const {
static_assert(std::is_floating_point<ResultT>::value,
"Result type must be floating point.");
long double const r = (static_cast<long double>(rng->Max())
- static_cast<long double>(rng->Min())) + 1.0L;
size_t const log2r = std::log(r) / std::log(2.0L);
size_t m = std::max<size_t>(1UL, (Bits + log2r - 1UL) / log2r);
ResultT sum_value = 0, r_k = 1;
for (size_t k = m; k != 0; --k) {
sum_value += ResultT((*rng)() - rng->Min()) * r_k;
r_k *= r;
}
ResultT res = sum_value / r_k;
return res;
}
public:
SimpleRealUniformDistribution(ResultT l, ResultT u) :
lower{l}, upper{u} {}
template <typename GeneratorT>
ResultT operator()(GeneratorT* rng) const {
ResultT tmp = GenerateCanonical<std::numeric_limits<ResultT>::digits,
GeneratorT>(rng);
return (tmp * (upper - lower)) + lower;
}
};
/**
* \fn std::shared_ptr<xgboost::DMatrix> CreateDMatrix(int rows, int columns, float sparsity, int seed);
*
* \brief Creates dmatrix with uniform random data between 0-1.
*
* \param rows The rows.
* \param columns The columns.
* \param sparsity The sparsity.
* \param seed The seed.
*
* \return The new d matrix.
*/
std::shared_ptr<xgboost::DMatrix> *CreateDMatrix(int rows, int columns,
float sparsity, int seed = 0);
std::unique_ptr<DMatrix> CreateSparsePageDMatrix(
size_t n_entries, size_t page_size, std::string tmp_file);
/**
* \fn std::unique_ptr<DMatrix> CreateSparsePageDMatrixWithRC(size_t n_rows, size_t n_cols,
* size_t page_size);
*
* \brief Creates dmatrix with some records, each record containing random number of
* features in [1, n_cols]
*
* \param n_rows Number of records to create.
* \param n_cols Max number of features within that record.
* \param page_size Sparse page size for the pages within the dmatrix. If page size is 0
* then the entire dmatrix is resident in memory; else, multiple sparse pages
* of page size are created and backed to disk, which would have to be
* streamed in at point of use.
* \param deterministic The content inside the dmatrix is constant for this configuration, if true;
* else, the content changes every time this method is invoked
*
* \return The new dmatrix.
*/
std::unique_ptr<DMatrix> CreateSparsePageDMatrixWithRC(size_t n_rows, size_t n_cols,
size_t page_size, bool deterministic);
gbm::GBTreeModel CreateTestModel();
inline LearnerTrainParam CreateEmptyGenericParam(int gpu_id, int n_gpus) {
xgboost::LearnerTrainParam tparam;
std::vector<std::pair<std::string, std::string>> args {
{"gpu_id", std::to_string(gpu_id)},
{"n_gpus", std::to_string(n_gpus)}};
tparam.Init(args);
return tparam;
}
} // namespace xgboost
#endif