* Fix CPU hist init for sparse dataset. * Implement sparse histogram cut. * Allow empty features. * Fix windows build, don't use sparse in distributed environment. * Comments. * Smaller threshold. * Fix windows omp. * Fix msvc lambda capture. * Fix MSVC macro. * Fix MSVC initialization list. * Fix MSVC initialization list x2. * Preserve categorical feature behavior. * Rename matrix to sparse cuts. * Reuse UseGroup. * Check for categorical data when adding cut. Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu> * Sanity check. * Fix comments. * Fix comment.
474 lines
18 KiB
Plaintext
474 lines
18 KiB
Plaintext
/*!
|
|
* Copyright 2018 XGBoost contributors
|
|
*/
|
|
|
|
#include "./hist_util.h"
|
|
#include <xgboost/logging.h>
|
|
|
|
#include <thrust/copy.h>
|
|
#include <thrust/functional.h>
|
|
#include <thrust/iterator/counting_iterator.h>
|
|
#include <thrust/iterator/transform_iterator.h>
|
|
#include <thrust/reduce.h>
|
|
#include <thrust/sequence.h>
|
|
|
|
#include <utility>
|
|
#include <vector>
|
|
#include <memory>
|
|
#include <mutex>
|
|
|
|
#include "../tree/param.h"
|
|
#include "./host_device_vector.h"
|
|
#include "./device_helpers.cuh"
|
|
#include "./quantile.h"
|
|
|
|
namespace xgboost {
|
|
namespace common {
|
|
|
|
using WXQSketch = DenseCuts::WXQSketch;
|
|
|
|
__global__ void FindCutsK
|
|
(WXQSketch::Entry* __restrict__ cuts, const bst_float* __restrict__ data,
|
|
const float* __restrict__ cum_weights, int nsamples, int ncuts) {
|
|
// ncuts < nsamples
|
|
int icut = threadIdx.x + blockIdx.x * blockDim.x;
|
|
if (icut >= ncuts) {
|
|
return;
|
|
}
|
|
WXQSketch::Entry v;
|
|
int isample = 0;
|
|
if (icut == 0) {
|
|
isample = 0;
|
|
} else if (icut == ncuts - 1) {
|
|
isample = nsamples - 1;
|
|
} else {
|
|
bst_float rank = cum_weights[nsamples - 1] / static_cast<float>(ncuts - 1)
|
|
* static_cast<float>(icut);
|
|
// -1 is used because cum_weights is an inclusive sum
|
|
isample = dh::UpperBound(cum_weights, nsamples, rank);
|
|
isample = max(0, min(isample, nsamples - 1));
|
|
}
|
|
// repeated values will be filtered out on the CPU
|
|
bst_float rmin = isample > 0 ? cum_weights[isample - 1] : 0;
|
|
bst_float rmax = cum_weights[isample];
|
|
cuts[icut] = WXQSketch::Entry(rmin, rmax, rmax - rmin, data[isample]);
|
|
}
|
|
|
|
// predictate for thrust filtering that returns true if the element is not a NaN
|
|
struct IsNotNaN {
|
|
__device__ bool operator()(float a) const { return !isnan(a); }
|
|
};
|
|
|
|
__global__ void UnpackFeaturesK
|
|
(float* __restrict__ fvalues, float* __restrict__ feature_weights,
|
|
const size_t* __restrict__ row_ptrs, const float* __restrict__ weights,
|
|
Entry* entries, size_t nrows_array, int ncols, size_t row_begin_ptr,
|
|
size_t nrows) {
|
|
size_t irow = threadIdx.x + size_t(blockIdx.x) * blockDim.x;
|
|
if (irow >= nrows) {
|
|
return;
|
|
}
|
|
size_t row_length = row_ptrs[irow + 1] - row_ptrs[irow];
|
|
int icol = threadIdx.y + blockIdx.y * blockDim.y;
|
|
if (icol >= row_length) {
|
|
return;
|
|
}
|
|
Entry entry = entries[row_ptrs[irow] - row_begin_ptr + icol];
|
|
size_t ind = entry.index * nrows_array + irow;
|
|
// if weights are present, ensure that a non-NaN value is written to weights
|
|
// if and only if it is also written to features
|
|
if (!isnan(entry.fvalue) && (weights == nullptr || !isnan(weights[irow]))) {
|
|
fvalues[ind] = entry.fvalue;
|
|
if (feature_weights != nullptr && weights != nullptr) {
|
|
feature_weights[ind] = weights[irow];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief A container that holds the device sketches across all
|
|
* sparse page batches which are distributed to different devices.
|
|
* As sketches are aggregated by column, the mutex guards
|
|
* multiple devices pushing sketch summary for the same column
|
|
* across distinct rows.
|
|
*/
|
|
struct SketchContainer {
|
|
std::vector<DenseCuts::WXQSketch> sketches_; // NOLINT
|
|
std::vector<std::mutex> col_locks_; // NOLINT
|
|
static constexpr int kOmpNumColsParallelizeLimit = 1000;
|
|
|
|
SketchContainer(const tree::TrainParam ¶m, DMatrix *dmat) :
|
|
col_locks_(dmat->Info().num_col_) {
|
|
const MetaInfo &info = dmat->Info();
|
|
// Initialize Sketches for this dmatrix
|
|
sketches_.resize(info.num_col_);
|
|
#pragma omp parallel for schedule(static) if (info.num_col_ > kOmpNumColsParallelizeLimit)
|
|
for (int icol = 0; icol < info.num_col_; ++icol) {
|
|
sketches_[icol].Init(info.num_row_, 1.0 / (8 * param.max_bin));
|
|
}
|
|
}
|
|
|
|
// Prevent copying/assigning/moving this as its internals can't be assigned/copied/moved
|
|
SketchContainer(const SketchContainer &) = delete;
|
|
SketchContainer(const SketchContainer &&) = delete;
|
|
SketchContainer &operator=(const SketchContainer &) = delete;
|
|
SketchContainer &operator=(const SketchContainer &&) = delete;
|
|
};
|
|
|
|
// finds quantiles on the GPU
|
|
struct GPUSketcher {
|
|
// manage memory for a single GPU
|
|
class DeviceShard {
|
|
int device_;
|
|
bst_uint row_begin_; // The row offset for this shard
|
|
bst_uint row_end_;
|
|
bst_uint n_rows_;
|
|
int num_cols_{0};
|
|
size_t n_cuts_{0};
|
|
size_t gpu_batch_nrows_{0};
|
|
bool has_weights_{false};
|
|
size_t row_stride_{0};
|
|
|
|
tree::TrainParam param_;
|
|
SketchContainer *sketch_container_;
|
|
dh::device_vector<size_t> row_ptrs_;
|
|
dh::device_vector<Entry> entries_;
|
|
dh::device_vector<bst_float> fvalues_;
|
|
dh::device_vector<bst_float> feature_weights_;
|
|
dh::device_vector<bst_float> fvalues_cur_;
|
|
dh::device_vector<WXQSketch::Entry> cuts_d_;
|
|
thrust::host_vector<WXQSketch::Entry> cuts_h_;
|
|
dh::device_vector<bst_float> weights_;
|
|
dh::device_vector<bst_float> weights2_;
|
|
std::vector<size_t> n_cuts_cur_;
|
|
dh::device_vector<size_t> num_elements_;
|
|
dh::device_vector<char> tmp_storage_;
|
|
|
|
public:
|
|
DeviceShard(int device, bst_uint row_begin, bst_uint row_end,
|
|
tree::TrainParam param, SketchContainer *sketch_container) :
|
|
device_(device), row_begin_(row_begin), row_end_(row_end),
|
|
n_rows_(row_end - row_begin), param_(std::move(param)), sketch_container_(sketch_container) {
|
|
}
|
|
|
|
~DeviceShard() {
|
|
dh::safe_cuda(cudaSetDevice(device_));
|
|
}
|
|
|
|
inline size_t GetRowStride() const {
|
|
return row_stride_;
|
|
}
|
|
|
|
void Init(const SparsePage& row_batch, const MetaInfo& info, int gpu_batch_nrows) {
|
|
num_cols_ = info.num_col_;
|
|
has_weights_ = info.weights_.Size() > 0;
|
|
|
|
// find the batch size
|
|
if (gpu_batch_nrows == 0) {
|
|
// By default, use no more than 1/16th of GPU memory
|
|
gpu_batch_nrows_ = dh::TotalMemory(device_) /
|
|
(16 * num_cols_ * sizeof(Entry));
|
|
} else if (gpu_batch_nrows == -1) {
|
|
gpu_batch_nrows_ = n_rows_;
|
|
} else {
|
|
gpu_batch_nrows_ = gpu_batch_nrows;
|
|
}
|
|
if (gpu_batch_nrows_ > n_rows_) {
|
|
gpu_batch_nrows_ = n_rows_;
|
|
}
|
|
|
|
constexpr int kFactor = 8;
|
|
double eps = 1.0 / (kFactor * param_.max_bin);
|
|
size_t dummy_nlevel;
|
|
WXQSketch::LimitSizeLevel(gpu_batch_nrows_, eps, &dummy_nlevel, &n_cuts_);
|
|
|
|
// allocate necessary GPU buffers
|
|
dh::safe_cuda(cudaSetDevice(device_));
|
|
|
|
entries_.resize(gpu_batch_nrows_ * num_cols_);
|
|
fvalues_.resize(gpu_batch_nrows_ * num_cols_);
|
|
fvalues_cur_.resize(gpu_batch_nrows_);
|
|
cuts_d_.resize(n_cuts_ * num_cols_);
|
|
cuts_h_.resize(n_cuts_ * num_cols_);
|
|
weights_.resize(gpu_batch_nrows_);
|
|
weights2_.resize(gpu_batch_nrows_);
|
|
num_elements_.resize(1);
|
|
|
|
if (has_weights_) {
|
|
feature_weights_.resize(gpu_batch_nrows_ * num_cols_);
|
|
}
|
|
n_cuts_cur_.resize(num_cols_);
|
|
|
|
// allocate storage for CUB algorithms; the size is the maximum of the sizes
|
|
// required for various algorithm
|
|
size_t tmp_size = 0, cur_tmp_size = 0;
|
|
// size for sorting
|
|
if (has_weights_) {
|
|
cub::DeviceRadixSort::SortPairs
|
|
(nullptr, cur_tmp_size, fvalues_cur_.data().get(),
|
|
fvalues_.data().get(), weights_.data().get(), weights2_.data().get(),
|
|
gpu_batch_nrows_);
|
|
} else {
|
|
cub::DeviceRadixSort::SortKeys
|
|
(nullptr, cur_tmp_size, fvalues_cur_.data().get(), fvalues_.data().get(),
|
|
gpu_batch_nrows_);
|
|
}
|
|
tmp_size = std::max(tmp_size, cur_tmp_size);
|
|
// size for inclusive scan
|
|
if (has_weights_) {
|
|
cub::DeviceScan::InclusiveSum
|
|
(nullptr, cur_tmp_size, weights2_.begin(), weights_.begin(), gpu_batch_nrows_);
|
|
tmp_size = std::max(tmp_size, cur_tmp_size);
|
|
}
|
|
// size for reduction by key
|
|
cub::DeviceReduce::ReduceByKey
|
|
(nullptr, cur_tmp_size, fvalues_.begin(),
|
|
fvalues_cur_.begin(), weights_.begin(), weights2_.begin(),
|
|
num_elements_.begin(), thrust::maximum<bst_float>(), gpu_batch_nrows_);
|
|
tmp_size = std::max(tmp_size, cur_tmp_size);
|
|
// size for filtering
|
|
cub::DeviceSelect::If
|
|
(nullptr, cur_tmp_size, fvalues_.begin(), fvalues_cur_.begin(),
|
|
num_elements_.begin(), gpu_batch_nrows_, IsNotNaN());
|
|
tmp_size = std::max(tmp_size, cur_tmp_size);
|
|
|
|
tmp_storage_.resize(tmp_size);
|
|
}
|
|
|
|
void FindColumnCuts(size_t batch_nrows, size_t icol) {
|
|
size_t tmp_size = tmp_storage_.size();
|
|
// filter out NaNs in feature values
|
|
auto fvalues_begin = fvalues_.data() + icol * gpu_batch_nrows_;
|
|
cub::DeviceSelect::If
|
|
(tmp_storage_.data().get(), tmp_size, fvalues_begin,
|
|
fvalues_cur_.data(), num_elements_.begin(), batch_nrows, IsNotNaN());
|
|
size_t nfvalues_cur = 0;
|
|
thrust::copy_n(num_elements_.begin(), 1, &nfvalues_cur);
|
|
|
|
// compute cumulative weights using a prefix scan
|
|
if (has_weights_) {
|
|
// filter out NaNs in weights;
|
|
// since cub::DeviceSelect::If performs stable filtering,
|
|
// the weights are stored in the correct positions
|
|
auto feature_weights_begin = feature_weights_.data() +
|
|
icol * gpu_batch_nrows_;
|
|
cub::DeviceSelect::If
|
|
(tmp_storage_.data().get(), tmp_size, feature_weights_begin,
|
|
weights_.data().get(), num_elements_.begin(), batch_nrows, IsNotNaN());
|
|
|
|
// sort the values and weights
|
|
cub::DeviceRadixSort::SortPairs
|
|
(tmp_storage_.data().get(), tmp_size, fvalues_cur_.data().get(),
|
|
fvalues_begin.get(), weights_.data().get(), weights2_.data().get(),
|
|
nfvalues_cur);
|
|
|
|
// sum the weights to get cumulative weight values
|
|
cub::DeviceScan::InclusiveSum
|
|
(tmp_storage_.data().get(), tmp_size, weights2_.begin(),
|
|
weights_.begin(), nfvalues_cur);
|
|
} else {
|
|
// sort the batch values
|
|
cub::DeviceRadixSort::SortKeys
|
|
(tmp_storage_.data().get(), tmp_size,
|
|
fvalues_cur_.data().get(), fvalues_begin.get(), nfvalues_cur);
|
|
|
|
// fill in cumulative weights with counting iterator
|
|
thrust::copy_n(thrust::make_counting_iterator(1), nfvalues_cur,
|
|
weights_.begin());
|
|
}
|
|
|
|
// remove repeated items and sum the weights across them;
|
|
// non-negative weights are assumed
|
|
cub::DeviceReduce::ReduceByKey
|
|
(tmp_storage_.data().get(), tmp_size, fvalues_begin,
|
|
fvalues_cur_.begin(), weights_.begin(), weights2_.begin(),
|
|
num_elements_.begin(), thrust::maximum<bst_float>(), nfvalues_cur);
|
|
size_t n_unique = 0;
|
|
thrust::copy_n(num_elements_.begin(), 1, &n_unique);
|
|
|
|
// extract cuts
|
|
n_cuts_cur_[icol] = std::min(n_cuts_, n_unique);
|
|
// if less elements than cuts: copy all elements with their weights
|
|
if (n_cuts_ > n_unique) {
|
|
float* weights2_ptr = weights2_.data().get();
|
|
float* fvalues_ptr = fvalues_cur_.data().get();
|
|
WXQSketch::Entry* cuts_ptr = cuts_d_.data().get() + icol * n_cuts_;
|
|
dh::LaunchN(device_, n_unique, [=]__device__(size_t i) {
|
|
bst_float rmax = weights2_ptr[i];
|
|
bst_float rmin = i > 0 ? weights2_ptr[i - 1] : 0;
|
|
cuts_ptr[i] = WXQSketch::Entry(rmin, rmax, rmax - rmin, fvalues_ptr[i]);
|
|
});
|
|
} else if (n_cuts_cur_[icol] > 0) {
|
|
// if more elements than cuts: use binary search on cumulative weights
|
|
int block = 256;
|
|
FindCutsK<<<common::DivRoundUp(n_cuts_cur_[icol], block), block>>>
|
|
(cuts_d_.data().get() + icol * n_cuts_, fvalues_cur_.data().get(),
|
|
weights2_.data().get(), n_unique, n_cuts_cur_[icol]);
|
|
dh::safe_cuda(cudaGetLastError()); // NOLINT
|
|
}
|
|
}
|
|
|
|
void SketchBatch(const SparsePage& row_batch, const MetaInfo& info,
|
|
size_t gpu_batch) {
|
|
// compute start and end indices
|
|
size_t batch_row_begin = gpu_batch * gpu_batch_nrows_;
|
|
size_t batch_row_end = std::min((gpu_batch + 1) * gpu_batch_nrows_,
|
|
static_cast<size_t>(n_rows_));
|
|
size_t batch_nrows = batch_row_end - batch_row_begin;
|
|
|
|
const auto& offset_vec = row_batch.offset.HostVector();
|
|
const auto& data_vec = row_batch.data.HostVector();
|
|
|
|
size_t n_entries = offset_vec[row_begin_ + batch_row_end] -
|
|
offset_vec[row_begin_ + batch_row_begin];
|
|
// copy the batch to the GPU
|
|
dh::safe_cuda
|
|
(cudaMemcpyAsync(entries_.data().get(),
|
|
data_vec.data() + offset_vec[row_begin_ + batch_row_begin],
|
|
n_entries * sizeof(Entry), cudaMemcpyDefault));
|
|
// copy the weights if necessary
|
|
if (has_weights_) {
|
|
const auto& weights_vec = info.weights_.HostVector();
|
|
dh::safe_cuda
|
|
(cudaMemcpyAsync(weights_.data().get(),
|
|
weights_vec.data() + row_begin_ + batch_row_begin,
|
|
batch_nrows * sizeof(bst_float), cudaMemcpyDefault));
|
|
}
|
|
|
|
// unpack the features; also unpack weights if present
|
|
thrust::fill(fvalues_.begin(), fvalues_.end(), NAN);
|
|
if (has_weights_) {
|
|
thrust::fill(feature_weights_.begin(), feature_weights_.end(), NAN);
|
|
}
|
|
|
|
dim3 block3(16, 64, 1);
|
|
// NOTE: This will typically support ~ 4M features - 64K*64
|
|
dim3 grid3(common::DivRoundUp(batch_nrows, block3.x),
|
|
common::DivRoundUp(num_cols_, block3.y), 1);
|
|
UnpackFeaturesK<<<grid3, block3>>>
|
|
(fvalues_.data().get(), has_weights_ ? feature_weights_.data().get() : nullptr,
|
|
row_ptrs_.data().get() + batch_row_begin,
|
|
has_weights_ ? weights_.data().get() : nullptr, entries_.data().get(),
|
|
gpu_batch_nrows_, num_cols_,
|
|
offset_vec[row_begin_ + batch_row_begin], batch_nrows);
|
|
|
|
for (int icol = 0; icol < num_cols_; ++icol) {
|
|
FindColumnCuts(batch_nrows, icol);
|
|
}
|
|
|
|
// add cuts into sketches
|
|
thrust::copy(cuts_d_.begin(), cuts_d_.end(), cuts_h_.begin());
|
|
#pragma omp parallel for schedule(static) \
|
|
if (num_cols_ > SketchContainer::kOmpNumColsParallelizeLimit) // NOLINT
|
|
for (int icol = 0; icol < num_cols_; ++icol) {
|
|
WXQSketch::SummaryContainer summary;
|
|
summary.Reserve(n_cuts_);
|
|
summary.MakeFromSorted(&cuts_h_[n_cuts_ * icol], n_cuts_cur_[icol]);
|
|
|
|
std::lock_guard<std::mutex> lock(sketch_container_->col_locks_[icol]);
|
|
sketch_container_->sketches_[icol].PushSummary(summary);
|
|
}
|
|
}
|
|
|
|
void ComputeRowStride() {
|
|
// Find the row stride for this batch
|
|
auto row_iter = row_ptrs_.begin();
|
|
// Functor for finding the maximum row size for this batch
|
|
auto get_size = [=] __device__(size_t row) {
|
|
return row_iter[row + 1] - row_iter[row];
|
|
}; // NOLINT
|
|
|
|
auto counting = thrust::make_counting_iterator(size_t(0));
|
|
using TransformT = thrust::transform_iterator<decltype(get_size),
|
|
decltype(counting), size_t>;
|
|
TransformT row_size_iter = TransformT(counting, get_size);
|
|
row_stride_ = thrust::reduce(row_size_iter, row_size_iter + n_rows_, 0,
|
|
thrust::maximum<size_t>());
|
|
}
|
|
|
|
void Sketch(const SparsePage& row_batch, const MetaInfo& info) {
|
|
// copy rows to the device
|
|
dh::safe_cuda(cudaSetDevice(device_));
|
|
const auto& offset_vec = row_batch.offset.HostVector();
|
|
row_ptrs_.resize(n_rows_ + 1);
|
|
thrust::copy(offset_vec.data() + row_begin_,
|
|
offset_vec.data() + row_end_ + 1, row_ptrs_.begin());
|
|
size_t gpu_nbatches = common::DivRoundUp(n_rows_, gpu_batch_nrows_);
|
|
for (size_t gpu_batch = 0; gpu_batch < gpu_nbatches; ++gpu_batch) {
|
|
SketchBatch(row_batch, info, gpu_batch);
|
|
}
|
|
}
|
|
};
|
|
|
|
void SketchBatch(const SparsePage &batch, const MetaInfo &info) {
|
|
GPUDistribution dist =
|
|
GPUDistribution::Block(GPUSet::All(learner_param_.gpu_id, learner_param_.n_gpus,
|
|
batch.Size()));
|
|
|
|
// create device shards
|
|
shards_.resize(dist.Devices().Size());
|
|
dh::ExecuteIndexShards(&shards_, [&](int i, std::unique_ptr<DeviceShard>& shard) {
|
|
size_t start = dist.ShardStart(batch.Size(), i);
|
|
size_t size = dist.ShardSize(batch.Size(), i);
|
|
shard = std::unique_ptr<DeviceShard>(
|
|
new DeviceShard(dist.Devices().DeviceId(i), start,
|
|
start + size, param_, sketch_container_.get()));
|
|
});
|
|
|
|
// compute sketches for each shard
|
|
dh::ExecuteIndexShards(&shards_,
|
|
[&](int idx, std::unique_ptr<DeviceShard>& shard) {
|
|
shard->Init(batch, info, gpu_batch_nrows_);
|
|
shard->Sketch(batch, info);
|
|
shard->ComputeRowStride();
|
|
});
|
|
|
|
// compute row stride across all shards
|
|
for (const auto &shard : shards_) {
|
|
row_stride_ = std::max(row_stride_, shard->GetRowStride());
|
|
}
|
|
}
|
|
|
|
GPUSketcher(const tree::TrainParam ¶m, const LearnerTrainParam &learner_param, int gpu_nrows)
|
|
: param_(param), learner_param_(learner_param), gpu_batch_nrows_(gpu_nrows), row_stride_(0) {
|
|
}
|
|
|
|
/* Builds the sketches on the GPU for the dmatrix and returns the row stride
|
|
* for the entire dataset */
|
|
size_t Sketch(DMatrix *dmat, DenseCuts *hmat) {
|
|
const MetaInfo &info = dmat->Info();
|
|
|
|
row_stride_ = 0;
|
|
sketch_container_.reset(new SketchContainer(param_, dmat));
|
|
for (const auto &batch : dmat->GetRowBatches()) {
|
|
this->SketchBatch(batch, info);
|
|
}
|
|
|
|
hmat->Init(&sketch_container_.get()->sketches_, param_.max_bin);
|
|
|
|
return row_stride_;
|
|
}
|
|
|
|
private:
|
|
std::vector<std::unique_ptr<DeviceShard>> shards_;
|
|
const tree::TrainParam ¶m_;
|
|
const LearnerTrainParam &learner_param_;
|
|
int gpu_batch_nrows_;
|
|
size_t row_stride_;
|
|
std::unique_ptr<SketchContainer> sketch_container_;
|
|
};
|
|
|
|
size_t DeviceSketch
|
|
(const tree::TrainParam ¶m, const LearnerTrainParam &learner_param, int gpu_batch_nrows,
|
|
DMatrix *dmat, HistogramCuts *hmat) {
|
|
GPUSketcher sketcher(param, learner_param, gpu_batch_nrows);
|
|
// We only need to return the result in HistogramCuts container, so it is safe to
|
|
// use a pointer of local HistogramCutsDense
|
|
DenseCuts dense_cuts(hmat);
|
|
auto res = sketcher.Sketch(dmat, &dense_cuts);
|
|
return res;
|
|
}
|
|
|
|
} // namespace common
|
|
} // namespace xgboost
|