xgboost/tests/cpp/tree/hist/test_evaluate_splits.cc
Jiaming Yuan 61dd854a52
[EM] Refactor GPU histogram builder. (#10764)
- Expose the maximum number of cached nodes to be consistent with the CPU implementation. Also easier for testing.
- Extract the subtraction trick for easier testing.
- Split up the `GradientQuantiser` to avoid circular dependency.
2024-08-30 02:39:14 +08:00

295 lines
11 KiB
C++

/**
* Copyright 2021-2023 by XGBoost Contributors
*/
#include "../test_evaluate_splits.h"
#include <gtest/gtest.h>
#include <xgboost/base.h> // for GradientPairPrecise, Args, Gradie...
#include <xgboost/context.h> // for Context
#include <xgboost/data.h> // for FeatureType, DMatrix, MetaInfo
#include <xgboost/logging.h> // for CHECK_EQ
#include <xgboost/tree_model.h> // for RegTree, RTreeNodeStat
#include <memory> // for make_shared, shared_ptr, addressof
#include "../../../../src/common/hist_util.h" // for HistCollection, HistogramCuts
#include "../../../../src/common/random.h" // for ColumnSampler
#include "../../../../src/common/row_set.h" // for RowSetCollection
#include "../../../../src/data/gradient_index.h" // for GHistIndexMatrix
#include "../../../../src/tree/hist/evaluate_splits.h" // for HistEvaluator
#include "../../../../src/tree/hist/expand_entry.h" // for CPUExpandEntry
#include "../../../../src/tree/hist/hist_cache.h" // for BoundedHistCollection
#include "../../../../src/tree/hist/param.h" // for HistMakerTrainParam
#include "../../../../src/tree/param.h" // for GradStats, TrainParam
#include "../../helpers.h" // for RandomDataGenerator, AllThreadsFo...
namespace xgboost::tree {
void TestEvaluateSplits(bool force_read_by_column) {
Context ctx;
ctx.nthread = 4;
int static constexpr kRows = 8, kCols = 16;
auto sampler = std::make_shared<common::ColumnSampler>(1u);
TrainParam param;
param.UpdateAllowUnknown(Args{{"min_child_weight", "0"}, {"reg_lambda", "0"}});
auto dmat = RandomDataGenerator(kRows, kCols, 0).Seed(3).GenerateDMatrix();
auto evaluator = HistEvaluator{&ctx, &param, dmat->Info(), sampler};
BoundedHistCollection hist;
std::vector<GradientPair> row_gpairs = {
{1.23f, 0.24f}, {0.24f, 0.25f}, {0.26f, 0.27f}, {2.27f, 0.28f},
{0.27f, 0.29f}, {0.37f, 0.39f}, {-0.47f, 0.49f}, {0.57f, 0.59f}};
size_t constexpr kMaxBins = 4;
// dense, no missing values
GHistIndexMatrix gmat(&ctx, dmat.get(), kMaxBins, 0.5, false);
common::RowSetCollection row_set_collection;
std::vector<bst_idx_t> &row_indices = *row_set_collection.Data();
row_indices.resize(kRows);
std::iota(row_indices.begin(), row_indices.end(), 0);
row_set_collection.Init();
HistMakerTrainParam hist_param;
hist.Reset(gmat.cut.Ptrs().back(), hist_param.MaxCachedHistNodes(ctx.Device()));
hist.AllocateHistograms({0});
auto const &elem = row_set_collection[0];
common::BuildHist<false>(row_gpairs, common::Span{elem.begin(), elem.end()}, gmat, hist[0],
force_read_by_column);
// Compute total gradient for all data points
GradientPairPrecise total_gpair;
for (const auto &e : row_gpairs) {
total_gpair += GradientPairPrecise(e);
}
RegTree tree;
std::vector<CPUExpandEntry> entries(1);
entries.front().nid = 0;
entries.front().depth = 0;
evaluator.InitRoot(GradStats{total_gpair});
evaluator.EvaluateSplits(hist, gmat.cut, {}, tree, &entries);
auto best_loss_chg =
evaluator.Evaluator().CalcSplitGain(
param, 0, entries.front().split.SplitIndex(),
entries.front().split.left_sum, entries.front().split.right_sum) -
evaluator.Stats().front().root_gain;
ASSERT_EQ(entries.front().split.loss_chg, best_loss_chg);
ASSERT_GT(entries.front().split.loss_chg, 16.2f);
// Assert that's the best split
for (size_t i = 1; i < gmat.cut.Ptrs().size(); ++i) {
GradStats left, right;
for (size_t j = gmat.cut.Ptrs()[i-1]; j < gmat.cut.Ptrs()[i]; ++j) {
auto loss_chg =
evaluator.Evaluator().CalcSplitGain(param, 0, i - 1, left, right) -
evaluator.Stats().front().root_gain;
ASSERT_GE(best_loss_chg, loss_chg);
left.Add(hist[0][j].GetGrad(), hist[0][j].GetHess());
right.SetSubstract(GradStats{total_gpair}, left);
}
}
}
TEST(HistEvaluator, Evaluate) {
TestEvaluateSplits(false);
TestEvaluateSplits(true);
}
TEST(HistMultiEvaluator, Evaluate) {
Context ctx;
ctx.nthread = 1;
TrainParam param;
param.Init(Args{{"min_child_weight", "0"}, {"reg_lambda", "0"}});
auto sampler = std::make_shared<common::ColumnSampler>(1u);
std::size_t n_samples = 3;
bst_feature_t n_features = 2;
bst_target_t n_targets = 2;
bst_bin_t n_bins = 2;
auto p_fmat =
RandomDataGenerator{n_samples, n_features, 0.5}.Targets(n_targets).GenerateDMatrix(true);
HistMultiEvaluator evaluator{&ctx, p_fmat->Info(), &param, sampler};
HistMakerTrainParam hist_param;
std::vector<BoundedHistCollection> histogram(n_targets);
linalg::Vector<GradientPairPrecise> root_sum({2}, DeviceOrd::CPU());
for (bst_target_t t{0}; t < n_targets; ++t) {
auto &hist = histogram[t];
hist.Reset(n_bins * n_features, hist_param.MaxCachedHistNodes(ctx.Device()));
hist.AllocateHistograms({0});
auto node_hist = hist[0];
node_hist[0] = {-0.5, 0.5};
node_hist[1] = {2.0, 0.5};
node_hist[2] = {0.5, 0.5};
node_hist[3] = {1.0, 0.5};
root_sum(t) += node_hist[0];
root_sum(t) += node_hist[1];
}
RegTree tree{n_targets, n_features};
auto weight = evaluator.InitRoot(root_sum.HostView());
tree.SetLeaf(RegTree::kRoot, weight.HostView());
auto w = weight.HostView();
ASSERT_EQ(w.Size(), n_targets);
ASSERT_EQ(w(0), -1.5);
ASSERT_EQ(w(1), -1.5);
common::HistogramCuts cuts;
cuts.cut_ptrs_ = {0, 2, 4};
cuts.cut_values_ = {0.5, 1.0, 2.0, 3.0};
cuts.min_vals_ = {-0.2, 1.8};
std::vector<MultiExpandEntry> entries(1, {/*nidx=*/0, /*depth=*/0});
std::vector<BoundedHistCollection const *> ptrs;
std::transform(histogram.cbegin(), histogram.cend(), std::back_inserter(ptrs),
[](auto const &h) { return std::addressof(h); });
evaluator.EvaluateSplits(tree, ptrs, cuts, &entries);
ASSERT_EQ(entries.front().split.loss_chg, 12.5);
ASSERT_EQ(entries.front().split.split_value, 0.5);
ASSERT_EQ(entries.front().split.SplitIndex(), 0);
ASSERT_EQ(sampler->GetFeatureSet(0)->Size(), n_features);
}
TEST(HistEvaluator, Apply) {
Context ctx;
ctx.nthread = 4;
RegTree tree;
int static constexpr kNRows = 8, kNCols = 16;
TrainParam param;
param.UpdateAllowUnknown(Args{{"min_child_weight", "0"}, {"reg_lambda", "0.0"}});
auto dmat = RandomDataGenerator(kNRows, kNCols, 0).Seed(3).GenerateDMatrix();
auto sampler = std::make_shared<common::ColumnSampler>(1u);
auto evaluator_ = HistEvaluator{&ctx, &param, dmat->Info(), sampler};
CPUExpandEntry entry{0, 0};
entry.split.loss_chg = 10.0f;
entry.split.left_sum = GradStats{0.4, 0.6f};
entry.split.right_sum = GradStats{0.5, 0.5f};
evaluator_.ApplyTreeSplit(entry, &tree);
ASSERT_EQ(tree.NumExtraNodes(), 2);
ASSERT_EQ(tree.Stat(tree[0].LeftChild()).sum_hess, 0.6f);
ASSERT_EQ(tree.Stat(tree[0].RightChild()).sum_hess, 0.5f);
{
RegTree tree;
entry.split.is_cat = true;
entry.split.split_value = 1.0;
evaluator_.ApplyTreeSplit(entry, &tree);
auto l = entry.split.left_sum;
ASSERT_NEAR(tree[1].LeafValue(), -l.sum_grad / l.sum_hess * param.learning_rate, kRtEps);
ASSERT_NEAR(tree[2].LeafValue(), -param.learning_rate, kRtEps);
}
}
TEST_F(TestPartitionBasedSplit, CPUHist) {
Context ctx;
// check the evaluator is returning the optimal split
std::vector<FeatureType> ft{FeatureType::kCategorical};
auto sampler = std::make_shared<common::ColumnSampler>(1u);
HistEvaluator evaluator{&ctx, &param_, info_, sampler};
evaluator.InitRoot(GradStats{total_gpair_});
RegTree tree;
std::vector<CPUExpandEntry> entries(1);
evaluator.EvaluateSplits(hist_, cuts_, {ft}, tree, &entries);
ASSERT_NEAR(entries[0].split.loss_chg, best_score_, 1e-16);
}
namespace {
auto CompareOneHotAndPartition(bool onehot) {
Context ctx;
int static constexpr kRows = 128, kCols = 1;
std::vector<FeatureType> ft(kCols, FeatureType::kCategorical);
TrainParam param;
if (onehot) {
// force use one-hot
param.UpdateAllowUnknown(
Args{{"min_child_weight", "0"}, {"reg_lambda", "0"}, {"max_cat_to_onehot", "100"}});
} else {
param.UpdateAllowUnknown(
Args{{"min_child_weight", "0"}, {"reg_lambda", "0"}, {"max_cat_to_onehot", "1"}});
}
size_t n_cats{2};
auto dmat =
RandomDataGenerator(kRows, kCols, 0).Seed(3).Type(ft).MaxCategory(n_cats).GenerateDMatrix();
auto sampler = std::make_shared<common::ColumnSampler>(1u);
auto evaluator = HistEvaluator{&ctx, &param, dmat->Info(), sampler};
std::vector<CPUExpandEntry> entries(1);
HistMakerTrainParam hist_param;
for (auto const &gmat : dmat->GetBatches<GHistIndexMatrix>(&ctx, {32, param.sparse_threshold})) {
BoundedHistCollection hist;
entries.front().nid = 0;
entries.front().depth = 0;
hist.Reset(gmat.cut.TotalBins(), hist_param.MaxCachedHistNodes(ctx.Device()));
hist.AllocateHistograms({0});
auto node_hist = hist[0];
CHECK_EQ(node_hist.size(), n_cats);
CHECK_EQ(node_hist.size(), gmat.cut.Ptrs().back());
GradientPairPrecise total_gpair;
for (size_t i = 0; i < node_hist.size(); ++i) {
node_hist[i] = {static_cast<double>(node_hist.size() - i), 1.0};
total_gpair += node_hist[i];
}
RegTree tree;
evaluator.InitRoot(GradStats{total_gpair});
evaluator.EvaluateSplits(hist, gmat.cut, ft, tree, &entries);
}
return entries.front();
}
} // anonymous namespace
TEST(HistEvaluator, Categorical) {
auto with_onehot = CompareOneHotAndPartition(true);
auto with_part = CompareOneHotAndPartition(false);
ASSERT_EQ(with_onehot.split.loss_chg, with_part.split.loss_chg);
}
TEST_F(TestCategoricalSplitWithMissing, HistEvaluator) {
Context ctx;
BoundedHistCollection hist;
HistMakerTrainParam hist_param;
hist.Reset(cuts_.TotalBins(), hist_param.MaxCachedHistNodes(ctx.Device()));
hist.AllocateHistograms({0});
auto node_hist = hist[0];
ASSERT_EQ(node_hist.size(), feature_histogram_.size());
std::copy(feature_histogram_.cbegin(), feature_histogram_.cend(), node_hist.begin());
auto sampler = std::make_shared<common::ColumnSampler>(1u);
MetaInfo info;
info.num_col_ = 1;
info.feature_types = {FeatureType::kCategorical};
auto evaluator = HistEvaluator{&ctx, &param_, info, sampler};
evaluator.InitRoot(GradStats{parent_sum_});
std::vector<CPUExpandEntry> entries(1);
RegTree tree;
evaluator.EvaluateSplits(hist, cuts_, info.feature_types.ConstHostSpan(), tree, &entries);
auto const &split = entries.front().split;
this->CheckResult(split.loss_chg, split.SplitIndex(), split.split_value, split.is_cat,
split.DefaultLeft(),
GradientPairPrecise{split.left_sum.GetGrad(), split.left_sum.GetHess()},
GradientPairPrecise{split.right_sum.GetGrad(), split.right_sum.GetHess()});
}
} // namespace xgboost::tree