426 lines
16 KiB
C++
426 lines
16 KiB
C++
/**
|
|
* Copyright 2016-2023 by XGBoost Contributors
|
|
*/
|
|
#include <xgboost/data.h>
|
|
|
|
#include <array> // std::array
|
|
#include <limits> // std::numeric_limits
|
|
#include <memory> // std::unique_ptr
|
|
|
|
#include "../../../src/data/adapter.h" // ArrayAdapter
|
|
#include "../../../src/data/simple_dmatrix.h" // SimpleDMatrix
|
|
#include "../filesystem.h" // dmlc::TemporaryDirectory
|
|
#include "../helpers.h" // RandomDataGenerator,CreateSimpleTestData
|
|
#include "xgboost/base.h"
|
|
#include "xgboost/host_device_vector.h" // HostDeviceVector
|
|
#include "xgboost/string_view.h" // StringView
|
|
|
|
using namespace xgboost; // NOLINT
|
|
|
|
TEST(SimpleDMatrix, MetaInfo) {
|
|
dmlc::TemporaryDirectory tempdir;
|
|
const std::string tmp_file = tempdir.path + "/simple.libsvm";
|
|
CreateSimpleTestData(tmp_file);
|
|
xgboost::DMatrix *dmat = xgboost::DMatrix::Load(tmp_file);
|
|
|
|
// Test the metadata that was parsed
|
|
EXPECT_EQ(dmat->Info().num_row_, 2);
|
|
EXPECT_EQ(dmat->Info().num_col_, 5);
|
|
EXPECT_EQ(dmat->Info().num_nonzero_, 6);
|
|
EXPECT_EQ(dmat->Info().labels.Size(), dmat->Info().num_row_);
|
|
EXPECT_EQ(dmat->Info().data_split_mode, DataSplitMode::kRow);
|
|
|
|
delete dmat;
|
|
}
|
|
|
|
TEST(SimpleDMatrix, RowAccess) {
|
|
dmlc::TemporaryDirectory tempdir;
|
|
const std::string tmp_file = tempdir.path + "/simple.libsvm";
|
|
CreateSimpleTestData(tmp_file);
|
|
xgboost::DMatrix *dmat = xgboost::DMatrix::Load(tmp_file, false);
|
|
|
|
// Loop over the batches and count the records
|
|
int64_t row_count = 0;
|
|
for (auto &batch : dmat->GetBatches<xgboost::SparsePage>()) {
|
|
row_count += batch.Size();
|
|
}
|
|
EXPECT_EQ(row_count, dmat->Info().num_row_);
|
|
// Test the data read into the first row
|
|
auto &batch = *dmat->GetBatches<xgboost::SparsePage>().begin();
|
|
auto page = batch.GetView();
|
|
auto first_row = page[0];
|
|
ASSERT_EQ(first_row.size(), 3);
|
|
EXPECT_EQ(first_row[2].index, 2);
|
|
EXPECT_EQ(first_row[2].fvalue, 20);
|
|
|
|
delete dmat;
|
|
}
|
|
|
|
TEST(SimpleDMatrix, ColAccessWithoutBatches) {
|
|
dmlc::TemporaryDirectory tempdir;
|
|
const std::string tmp_file = tempdir.path + "/simple.libsvm";
|
|
CreateSimpleTestData(tmp_file);
|
|
xgboost::DMatrix *dmat = xgboost::DMatrix::Load(tmp_file);
|
|
|
|
ASSERT_TRUE(dmat->SingleColBlock());
|
|
|
|
// Loop over the batches and assert the data is as expected
|
|
int64_t num_col_batch = 0;
|
|
for (const auto &batch : dmat->GetBatches<xgboost::SortedCSCPage>()) {
|
|
num_col_batch += 1;
|
|
EXPECT_EQ(batch.Size(), dmat->Info().num_col_)
|
|
<< "Expected batch size = number of cells as #batches is 1.";
|
|
}
|
|
EXPECT_EQ(num_col_batch, 1) << "Expected number of batches to be 1";
|
|
delete dmat;
|
|
}
|
|
|
|
TEST(SimpleDMatrix, Empty) {
|
|
std::vector<float> data{};
|
|
std::vector<unsigned> feature_idx = {};
|
|
std::vector<size_t> row_ptr = {};
|
|
|
|
data::CSRAdapter csr_adapter(row_ptr.data(), feature_idx.data(), data.data(),
|
|
0, 0, 0);
|
|
std::unique_ptr<data::SimpleDMatrix> dmat(new data::SimpleDMatrix(
|
|
&csr_adapter, std::numeric_limits<float>::quiet_NaN(), 1));
|
|
CHECK_EQ(dmat->Info().num_nonzero_, 0);
|
|
CHECK_EQ(dmat->Info().num_row_, 0);
|
|
CHECK_EQ(dmat->Info().num_col_, 0);
|
|
for (auto &batch : dmat->GetBatches<SparsePage>()) {
|
|
CHECK_EQ(batch.Size(), 0);
|
|
}
|
|
|
|
data::DenseAdapter dense_adapter(nullptr, 0, 0);
|
|
dmat.reset( new data::SimpleDMatrix(&dense_adapter,
|
|
std::numeric_limits<float>::quiet_NaN(), 1) );
|
|
CHECK_EQ(dmat->Info().num_nonzero_, 0);
|
|
CHECK_EQ(dmat->Info().num_row_, 0);
|
|
CHECK_EQ(dmat->Info().num_col_, 0);
|
|
for (auto &batch : dmat->GetBatches<SparsePage>()) {
|
|
CHECK_EQ(batch.Size(), 0);
|
|
}
|
|
|
|
data::CSCAdapter csc_adapter(nullptr, nullptr, nullptr, 0, 0);
|
|
dmat.reset(new data::SimpleDMatrix(
|
|
&csc_adapter, std::numeric_limits<float>::quiet_NaN(), 1));
|
|
CHECK_EQ(dmat->Info().num_nonzero_, 0);
|
|
CHECK_EQ(dmat->Info().num_row_, 0);
|
|
CHECK_EQ(dmat->Info().num_col_, 0);
|
|
for (auto &batch : dmat->GetBatches<SparsePage>()) {
|
|
CHECK_EQ(batch.Size(), 0);
|
|
}
|
|
}
|
|
|
|
TEST(SimpleDMatrix, MissingData) {
|
|
std::vector<float> data{0.0, std::nanf(""), 1.0};
|
|
std::vector<unsigned> feature_idx = {0, 1, 0};
|
|
std::vector<size_t> row_ptr = {0, 2, 3};
|
|
|
|
data::CSRAdapter adapter(row_ptr.data(), feature_idx.data(), data.data(), 2,
|
|
3, 2);
|
|
std::unique_ptr<data::SimpleDMatrix> dmat{new data::SimpleDMatrix{
|
|
&adapter, std::numeric_limits<float>::quiet_NaN(), 1}};
|
|
CHECK_EQ(dmat->Info().num_nonzero_, 2);
|
|
dmat.reset(new data::SimpleDMatrix(&adapter, 1.0, 1));
|
|
CHECK_EQ(dmat->Info().num_nonzero_, 1);
|
|
|
|
{
|
|
data[1] = std::numeric_limits<float>::infinity();
|
|
data::DenseAdapter adapter(data.data(), data.size(), 1);
|
|
EXPECT_THROW(data::SimpleDMatrix dmat(
|
|
&adapter, std::numeric_limits<float>::quiet_NaN(), -1),
|
|
dmlc::Error);
|
|
}
|
|
}
|
|
|
|
TEST(SimpleDMatrix, EmptyRow) {
|
|
std::vector<float> data{0.0, 1.0};
|
|
std::vector<unsigned> feature_idx = {0, 1};
|
|
std::vector<size_t> row_ptr = {0, 2, 2};
|
|
|
|
data::CSRAdapter adapter(row_ptr.data(), feature_idx.data(), data.data(), 2,
|
|
2, 2);
|
|
data::SimpleDMatrix dmat(&adapter, std::numeric_limits<float>::quiet_NaN(),
|
|
1);
|
|
CHECK_EQ(dmat.Info().num_nonzero_, 2);
|
|
CHECK_EQ(dmat.Info().num_row_, 2);
|
|
CHECK_EQ(dmat.Info().num_col_, 2);
|
|
}
|
|
|
|
TEST(SimpleDMatrix, FromDense) {
|
|
int m = 3;
|
|
int n = 2;
|
|
std::vector<float> data = {1, 2, 3, 4, 5, 6};
|
|
data::DenseAdapter adapter(data.data(), m, n);
|
|
data::SimpleDMatrix dmat(&adapter, std::numeric_limits<float>::quiet_NaN(),
|
|
-1);
|
|
EXPECT_EQ(dmat.Info().num_col_, 2);
|
|
EXPECT_EQ(dmat.Info().num_row_, 3);
|
|
EXPECT_EQ(dmat.Info().num_nonzero_, 6);
|
|
|
|
for (auto &batch : dmat.GetBatches<SparsePage>()) {
|
|
auto page = batch.GetView();
|
|
for (auto i = 0ull; i < batch.Size(); i++) {
|
|
auto inst = page[i];
|
|
for (auto j = 0ull; j < inst.size(); j++) {
|
|
EXPECT_EQ(inst[j].fvalue, data[i * n + j]);
|
|
EXPECT_EQ(inst[j].index, j);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(SimpleDMatrix, FromCSC) {
|
|
std::vector<float> data = {1, 3, 2, 4, 5};
|
|
std::vector<unsigned> row_idx = {0, 1, 0, 1, 2};
|
|
std::vector<size_t> col_ptr = {0, 2, 5};
|
|
data::CSCAdapter adapter(col_ptr.data(), row_idx.data(), data.data(), 2, 3);
|
|
data::SimpleDMatrix dmat(&adapter, std::numeric_limits<float>::quiet_NaN(),
|
|
-1);
|
|
EXPECT_EQ(dmat.Info().num_col_, 2);
|
|
EXPECT_EQ(dmat.Info().num_row_, 3);
|
|
EXPECT_EQ(dmat.Info().num_nonzero_, 5);
|
|
|
|
auto &batch = *dmat.GetBatches<SparsePage>().begin();
|
|
auto page = batch.GetView();
|
|
auto inst = page[0];
|
|
EXPECT_EQ(inst[0].fvalue, 1);
|
|
EXPECT_EQ(inst[0].index, 0);
|
|
EXPECT_EQ(inst[1].fvalue, 2);
|
|
EXPECT_EQ(inst[1].index, 1);
|
|
|
|
inst = page[1];
|
|
EXPECT_EQ(inst[0].fvalue, 3);
|
|
EXPECT_EQ(inst[0].index, 0);
|
|
EXPECT_EQ(inst[1].fvalue, 4);
|
|
EXPECT_EQ(inst[1].index, 1);
|
|
|
|
inst = page[2];
|
|
EXPECT_EQ(inst[0].fvalue, 5);
|
|
EXPECT_EQ(inst[0].index, 1);
|
|
}
|
|
|
|
TEST(SimpleDMatrix, FromFile) {
|
|
dmlc::TemporaryDirectory tempdir;
|
|
std::string filename = tempdir.path + "test.libsvm";
|
|
CreateBigTestData(filename, 3 * 5);
|
|
// Add an empty row at the end of the matrix
|
|
{
|
|
std::ofstream fo(filename, std::ios::app | std::ios::out);
|
|
fo << "0\n";
|
|
}
|
|
constexpr size_t kExpectedNumRow = 6;
|
|
std::unique_ptr<dmlc::Parser<uint32_t>> parser(
|
|
dmlc::Parser<uint32_t>::Create(filename.c_str(), 0, 1, "auto"));
|
|
|
|
auto verify_batch = [kExpectedNumRow](SparsePage const &page) {
|
|
auto batch = page.GetView();
|
|
EXPECT_EQ(batch.Size(), kExpectedNumRow);
|
|
EXPECT_EQ(page.offset.HostVector(),
|
|
std::vector<bst_row_t>({0, 3, 6, 9, 12, 15, 15}));
|
|
EXPECT_EQ(page.base_rowid, 0);
|
|
|
|
for (auto i = 0ull; i < batch.Size() - 1; i++) {
|
|
if (i % 2 == 0) {
|
|
EXPECT_EQ(batch[i][0].index, 0);
|
|
EXPECT_EQ(batch[i][1].index, 1);
|
|
EXPECT_EQ(batch[i][2].index, 2);
|
|
} else {
|
|
EXPECT_EQ(batch[i][0].index, 0);
|
|
EXPECT_EQ(batch[i][1].index, 3);
|
|
EXPECT_EQ(batch[i][2].index, 4);
|
|
}
|
|
}
|
|
};
|
|
|
|
constexpr bst_feature_t kCols = 5;
|
|
data::FileAdapter adapter(parser.get());
|
|
data::SimpleDMatrix dmat(&adapter, std::numeric_limits<float>::quiet_NaN(),
|
|
1);
|
|
ASSERT_EQ(dmat.Info().num_col_, kCols);
|
|
|
|
for (auto &batch : dmat.GetBatches<SparsePage>()) {
|
|
verify_batch(batch);
|
|
}
|
|
}
|
|
|
|
TEST(SimpleDMatrix, Slice) {
|
|
size_t constexpr kRows {16};
|
|
size_t constexpr kCols {8};
|
|
size_t constexpr kClasses {3};
|
|
auto p_m = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(true);
|
|
auto& weights = p_m->Info().weights_.HostVector();
|
|
weights.resize(kRows);
|
|
std::iota(weights.begin(), weights.end(), 0.0f);
|
|
|
|
auto& lower = p_m->Info().labels_lower_bound_.HostVector();
|
|
auto& upper = p_m->Info().labels_upper_bound_.HostVector();
|
|
lower.resize(kRows);
|
|
upper.resize(kRows);
|
|
|
|
std::iota(lower.begin(), lower.end(), 0.0f);
|
|
std::iota(upper.begin(), upper.end(), 1.0f);
|
|
|
|
auto& margin = p_m->Info().base_margin_;
|
|
margin = decltype(p_m->Info().base_margin_){{kRows, kClasses}, Context::kCpuId};
|
|
|
|
std::array<int32_t, 3> ridxs {1, 3, 5};
|
|
std::unique_ptr<DMatrix> out { p_m->Slice(ridxs) };
|
|
ASSERT_EQ(out->Info().labels.Size(), ridxs.size());
|
|
ASSERT_EQ(out->Info().labels_lower_bound_.Size(), ridxs.size());
|
|
ASSERT_EQ(out->Info().labels_upper_bound_.Size(), ridxs.size());
|
|
ASSERT_EQ(out->Info().base_margin_.Size(), ridxs.size() * kClasses);
|
|
|
|
for (auto const& in_batch : p_m->GetBatches<SparsePage>()) {
|
|
auto in_page = in_batch.GetView();
|
|
for (auto const &out_batch : out->GetBatches<SparsePage>()) {
|
|
auto out_page = out_batch.GetView();
|
|
for (size_t i = 0; i < ridxs.size(); ++i) {
|
|
auto ridx = ridxs[i];
|
|
auto out_inst = out_page[i];
|
|
auto in_inst = in_page[ridx];
|
|
ASSERT_EQ(out_inst.size(), in_inst.size()) << i;
|
|
for (size_t j = 0; j < in_inst.size(); ++j) {
|
|
ASSERT_EQ(in_inst[j].fvalue, out_inst[j].fvalue);
|
|
ASSERT_EQ(in_inst[j].index, out_inst[j].index);
|
|
}
|
|
|
|
ASSERT_EQ(p_m->Info().labels_lower_bound_.HostVector().at(ridx),
|
|
out->Info().labels_lower_bound_.HostVector().at(i));
|
|
ASSERT_EQ(p_m->Info().labels_upper_bound_.HostVector().at(ridx),
|
|
out->Info().labels_upper_bound_.HostVector().at(i));
|
|
ASSERT_EQ(p_m->Info().weights_.HostVector().at(ridx),
|
|
out->Info().weights_.HostVector().at(i));
|
|
|
|
auto out_margin = out->Info().base_margin_.View(Context::kCpuId);
|
|
auto in_margin = margin.View(Context::kCpuId);
|
|
for (size_t j = 0; j < kClasses; ++j) {
|
|
ASSERT_EQ(out_margin(i, j), in_margin(ridx, j));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ASSERT_EQ(out->Info().num_col_, out->Info().num_col_);
|
|
ASSERT_EQ(out->Info().num_row_, ridxs.size());
|
|
ASSERT_EQ(out->Info().num_nonzero_, ridxs.size() * kCols); // dense
|
|
|
|
{
|
|
HostDeviceVector<float> data;
|
|
auto arr_str = RandomDataGenerator{kRows, kCols, 0.0}.GenerateArrayInterface(&data);
|
|
auto adapter = data::ArrayAdapter{StringView{arr_str}};
|
|
auto n_threads = 2;
|
|
std::unique_ptr<DMatrix> p_fmat{
|
|
DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), n_threads, "")};
|
|
std::unique_ptr<DMatrix> slice{p_fmat->Slice(ridxs)};
|
|
ASSERT_LE(slice->Ctx()->Threads(), n_threads);
|
|
}
|
|
}
|
|
|
|
TEST(SimpleDMatrix, SliceCol) {
|
|
size_t constexpr kRows {16};
|
|
size_t constexpr kCols {8};
|
|
size_t constexpr kClasses {3};
|
|
auto p_m = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(true);
|
|
auto& weights = p_m->Info().weights_.HostVector();
|
|
weights.resize(kRows);
|
|
std::iota(weights.begin(), weights.end(), 0.0f);
|
|
|
|
auto& lower = p_m->Info().labels_lower_bound_.HostVector();
|
|
auto& upper = p_m->Info().labels_upper_bound_.HostVector();
|
|
lower.resize(kRows);
|
|
upper.resize(kRows);
|
|
|
|
std::iota(lower.begin(), lower.end(), 0.0f);
|
|
std::iota(upper.begin(), upper.end(), 1.0f);
|
|
|
|
auto& margin = p_m->Info().base_margin_;
|
|
margin = decltype(p_m->Info().base_margin_){{kRows, kClasses}, Context::kCpuId};
|
|
|
|
auto constexpr kSlices {2};
|
|
auto constexpr kSliceSize {4};
|
|
for (auto slice = 0; slice < kSlices; slice++) {
|
|
std::unique_ptr<DMatrix> out { p_m->SliceCol(kSlices, slice) };
|
|
ASSERT_EQ(out->Info().labels.Size(), kRows);
|
|
ASSERT_EQ(out->Info().labels_lower_bound_.Size(), kRows);
|
|
ASSERT_EQ(out->Info().labels_upper_bound_.Size(), kRows);
|
|
ASSERT_EQ(out->Info().base_margin_.Size(), kRows * kClasses);
|
|
|
|
for (auto const &in_batch : p_m->GetBatches<SparsePage>()) {
|
|
auto in_page = in_batch.GetView();
|
|
for (auto const &out_batch : out->GetBatches<SparsePage>()) {
|
|
auto out_page = out_batch.GetView();
|
|
for (size_t i = 0; i < kRows; ++i) {
|
|
auto out_inst = out_page[i];
|
|
auto in_inst = in_page[i];
|
|
ASSERT_EQ(out_inst.size() * 2, in_inst.size()) << i;
|
|
for (size_t j = 0; j < kSliceSize; ++j) {
|
|
auto const slice_start = kSliceSize * slice;
|
|
ASSERT_EQ(in_inst[slice_start + j].fvalue, out_inst[j].fvalue);
|
|
ASSERT_EQ(in_inst[slice_start + j].index, out_inst[j].index);
|
|
}
|
|
|
|
ASSERT_EQ(p_m->Info().labels_lower_bound_.HostVector().at(i),
|
|
out->Info().labels_lower_bound_.HostVector().at(i));
|
|
ASSERT_EQ(p_m->Info().labels_upper_bound_.HostVector().at(i),
|
|
out->Info().labels_upper_bound_.HostVector().at(i));
|
|
ASSERT_EQ(p_m->Info().weights_.HostVector().at(i), out->Info().weights_.HostVector().at(i));
|
|
|
|
auto out_margin = out->Info().base_margin_.View(Context::kCpuId);
|
|
auto in_margin = margin.View(Context::kCpuId);
|
|
for (size_t j = 0; j < kClasses; ++j) {
|
|
ASSERT_EQ(out_margin(i, j), in_margin(i, j));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ASSERT_EQ(out->Info().num_col_, out->Info().num_col_);
|
|
ASSERT_EQ(out->Info().num_row_, kRows);
|
|
ASSERT_EQ(out->Info().num_nonzero_, kRows * kSliceSize); // dense
|
|
ASSERT_EQ(out->Info().data_split_mode, DataSplitMode::kCol);
|
|
}
|
|
}
|
|
|
|
TEST(SimpleDMatrix, SaveLoadBinary) {
|
|
dmlc::TemporaryDirectory tempdir;
|
|
const std::string tmp_file = tempdir.path + "/simple.libsvm";
|
|
CreateSimpleTestData(tmp_file);
|
|
xgboost::DMatrix * dmat = xgboost::DMatrix::Load(tmp_file);
|
|
data::SimpleDMatrix *simple_dmat = dynamic_cast<data::SimpleDMatrix*>(dmat);
|
|
|
|
const std::string tmp_binfile = tempdir.path + "/csr_source.binary";
|
|
simple_dmat->SaveToLocalFile(tmp_binfile);
|
|
xgboost::DMatrix * dmat_read = xgboost::DMatrix::Load(tmp_binfile);
|
|
|
|
EXPECT_EQ(dmat->Info().num_col_, dmat_read->Info().num_col_);
|
|
EXPECT_EQ(dmat->Info().num_row_, dmat_read->Info().num_row_);
|
|
EXPECT_EQ(dmat->Info().num_row_, dmat_read->Info().num_row_);
|
|
|
|
// Test we have non-empty batch
|
|
EXPECT_EQ(dmat->GetBatches<xgboost::SparsePage>().begin().AtEnd(), false);
|
|
|
|
auto row_iter = dmat->GetBatches<xgboost::SparsePage>().begin();
|
|
auto row_iter_read = dmat_read->GetBatches<xgboost::SparsePage>().begin();
|
|
// Test the data read into the first row
|
|
auto first_row = (*row_iter).GetView()[0];
|
|
auto first_row_read = (*row_iter_read).GetView()[0];
|
|
EXPECT_EQ(first_row.size(), first_row_read.size());
|
|
EXPECT_EQ(first_row[2].index, first_row_read[2].index);
|
|
EXPECT_EQ(first_row[2].fvalue, first_row_read[2].fvalue);
|
|
delete dmat;
|
|
delete dmat_read;
|
|
}
|
|
|
|
TEST(SimpleDMatrix, Threads) {
|
|
size_t constexpr kRows{16};
|
|
size_t constexpr kCols{8};
|
|
HostDeviceVector<float> data;
|
|
auto arr_str = RandomDataGenerator{kRows, kCols, 0.0}.GenerateArrayInterface(&data);
|
|
auto adapter = data::ArrayAdapter{StringView{arr_str}};
|
|
std::unique_ptr<DMatrix> p_fmat{
|
|
DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), 0, "")};
|
|
ASSERT_EQ(p_fmat->Ctx()->Threads(), AllThreadsForTest());
|
|
}
|