xgboost/include/xgboost/tree_model.h
Jiaming Yuan 5feee8d4a9
Define core multi-target regression tree structure. (#8884)
- Define a new tree struct embedded in the `RegTree`.
- Provide dispatching functions in `RegTree`.
- Fix some c++-17 warnings about the use of nodiscard (currently we disable the warning on
  the CI).
- Use uint32_t instead of size_t for `bst_target_t` as it has a defined size and can be used
  as part of dmlc parameter.
- Hide the `Segment` struct inside the categorical split matrix.
2023-03-09 19:03:06 +08:00

838 lines
28 KiB
C++

/**
* Copyright 2014-2023 by Contributors
* \file tree_model.h
* \brief model structure for tree
* \author Tianqi Chen
*/
#ifndef XGBOOST_TREE_MODEL_H_
#define XGBOOST_TREE_MODEL_H_
#include <dmlc/io.h>
#include <dmlc/parameter.h>
#include <xgboost/base.h>
#include <xgboost/data.h>
#include <xgboost/feature_map.h>
#include <xgboost/linalg.h> // for VectorView
#include <xgboost/logging.h>
#include <xgboost/model.h>
#include <xgboost/multi_target_tree_model.h> // for MultiTargetTree
#include <algorithm>
#include <cstring>
#include <limits>
#include <memory> // for make_unique
#include <stack>
#include <string>
#include <tuple>
#include <vector>
namespace xgboost {
class Json;
// FIXME(trivialfis): Once binary IO is gone, make this parameter internal as it should
// not be configured by users.
/*! \brief meta parameters of the tree */
struct TreeParam : public dmlc::Parameter<TreeParam> {
/*! \brief (Deprecated) number of start root */
int deprecated_num_roots{1};
/*! \brief total number of nodes */
int num_nodes{1};
/*!\brief number of deleted nodes */
int num_deleted{0};
/*! \brief maximum depth, this is a statistics of the tree */
int deprecated_max_depth{0};
/*! \brief number of features used for tree construction */
bst_feature_t num_feature{0};
/*!
* \brief leaf vector size, used for vector tree
* used to store more than one dimensional information in tree
*/
bst_target_t size_leaf_vector{1};
/*! \brief reserved part, make sure alignment works for 64bit */
int reserved[31];
/*! \brief constructor */
TreeParam() {
// assert compact alignment
static_assert(sizeof(TreeParam) == (31 + 6) * sizeof(int), "TreeParam: 64 bit align");
std::memset(reserved, 0, sizeof(reserved));
}
// Swap byte order for all fields. Useful for transporting models between machines with different
// endianness (big endian vs little endian)
[[nodiscard]] TreeParam ByteSwap() const {
TreeParam x = *this;
dmlc::ByteSwap(&x.deprecated_num_roots, sizeof(x.deprecated_num_roots), 1);
dmlc::ByteSwap(&x.num_nodes, sizeof(x.num_nodes), 1);
dmlc::ByteSwap(&x.num_deleted, sizeof(x.num_deleted), 1);
dmlc::ByteSwap(&x.deprecated_max_depth, sizeof(x.deprecated_max_depth), 1);
dmlc::ByteSwap(&x.num_feature, sizeof(x.num_feature), 1);
dmlc::ByteSwap(&x.size_leaf_vector, sizeof(x.size_leaf_vector), 1);
dmlc::ByteSwap(x.reserved, sizeof(x.reserved[0]), sizeof(x.reserved) / sizeof(x.reserved[0]));
return x;
}
// declare the parameters
DMLC_DECLARE_PARAMETER(TreeParam) {
// only declare the parameters that can be set by the user.
// other arguments are set by the algorithm.
DMLC_DECLARE_FIELD(num_nodes).set_lower_bound(1).set_default(1);
DMLC_DECLARE_FIELD(num_feature)
.set_default(0)
.describe("Number of features used in tree construction.");
DMLC_DECLARE_FIELD(num_deleted).set_default(0);
DMLC_DECLARE_FIELD(size_leaf_vector)
.set_lower_bound(0)
.set_default(1)
.describe("Size of leaf vector, reserved for vector tree");
}
bool operator==(const TreeParam& b) const {
return num_nodes == b.num_nodes && num_deleted == b.num_deleted &&
num_feature == b.num_feature && size_leaf_vector == b.size_leaf_vector;
}
};
/*! \brief node statistics used in regression tree */
struct RTreeNodeStat {
/*! \brief loss change caused by current split */
bst_float loss_chg;
/*! \brief sum of hessian values, used to measure coverage of data */
bst_float sum_hess;
/*! \brief weight of current node */
bst_float base_weight;
/*! \brief number of child that is leaf node known up to now */
int leaf_child_cnt {0};
RTreeNodeStat() = default;
RTreeNodeStat(float loss_chg, float sum_hess, float weight) :
loss_chg{loss_chg}, sum_hess{sum_hess}, base_weight{weight} {}
bool operator==(const RTreeNodeStat& b) const {
return loss_chg == b.loss_chg && sum_hess == b.sum_hess &&
base_weight == b.base_weight && leaf_child_cnt == b.leaf_child_cnt;
}
// Swap byte order for all fields. Useful for transporting models between machines with different
// endianness (big endian vs little endian)
[[nodiscard]] RTreeNodeStat ByteSwap() const {
RTreeNodeStat x = *this;
dmlc::ByteSwap(&x.loss_chg, sizeof(x.loss_chg), 1);
dmlc::ByteSwap(&x.sum_hess, sizeof(x.sum_hess), 1);
dmlc::ByteSwap(&x.base_weight, sizeof(x.base_weight), 1);
dmlc::ByteSwap(&x.leaf_child_cnt, sizeof(x.leaf_child_cnt), 1);
return x;
}
};
/**
* \brief Helper for defining copyable data structure that contains unique pointers.
*/
template <typename T>
class CopyUniquePtr {
std::unique_ptr<T> ptr_{nullptr};
public:
CopyUniquePtr() = default;
CopyUniquePtr(CopyUniquePtr const& that) {
ptr_.reset(nullptr);
if (that.ptr_) {
ptr_ = std::make_unique<T>(*that);
}
}
T* get() const noexcept { return ptr_.get(); } // NOLINT
T& operator*() { return *ptr_; }
T* operator->() noexcept { return this->get(); }
T const& operator*() const { return *ptr_; }
T const* operator->() const noexcept { return this->get(); }
explicit operator bool() const { return static_cast<bool>(ptr_); }
bool operator!() const { return !ptr_; }
void reset(T* ptr) { ptr_.reset(ptr); } // NOLINT
};
/**
* \brief define regression tree to be the most common tree model.
*
* This is the data structure used in xgboost's major tree models.
*/
class RegTree : public Model {
public:
using SplitCondT = bst_float;
static constexpr bst_node_t kInvalidNodeId{MultiTargetTree::InvalidNodeId()};
static constexpr uint32_t kDeletedNodeMarker = std::numeric_limits<uint32_t>::max();
static constexpr bst_node_t kRoot{0};
/*! \brief tree node */
class Node {
public:
XGBOOST_DEVICE Node() {
// assert compact alignment
static_assert(sizeof(Node) == 4 * sizeof(int) + sizeof(Info),
"Node: 64 bit align");
}
Node(int32_t cleft, int32_t cright, int32_t parent,
uint32_t split_ind, float split_cond, bool default_left) :
parent_{parent}, cleft_{cleft}, cright_{cright} {
this->SetParent(parent_);
this->SetSplit(split_ind, split_cond, default_left);
}
/*! \brief index of left child */
XGBOOST_DEVICE [[nodiscard]] int LeftChild() const {
return this->cleft_;
}
/*! \brief index of right child */
XGBOOST_DEVICE [[nodiscard]] int RightChild() const {
return this->cright_;
}
/*! \brief index of default child when feature is missing */
XGBOOST_DEVICE [[nodiscard]] int DefaultChild() const {
return this->DefaultLeft() ? this->LeftChild() : this->RightChild();
}
/*! \brief feature index of split condition */
XGBOOST_DEVICE [[nodiscard]] unsigned SplitIndex() const {
return sindex_ & ((1U << 31) - 1U);
}
/*! \brief when feature is unknown, whether goes to left child */
XGBOOST_DEVICE [[nodiscard]] bool DefaultLeft() const {
return (sindex_ >> 31) != 0;
}
/*! \brief whether current node is leaf node */
XGBOOST_DEVICE [[nodiscard]] bool IsLeaf() const {
return cleft_ == kInvalidNodeId;
}
/*! \return get leaf value of leaf node */
XGBOOST_DEVICE [[nodiscard]] float LeafValue() const {
return (this->info_).leaf_value;
}
/*! \return get split condition of the node */
XGBOOST_DEVICE [[nodiscard]] SplitCondT SplitCond() const {
return (this->info_).split_cond;
}
/*! \brief get parent of the node */
XGBOOST_DEVICE [[nodiscard]] int Parent() const {
return parent_ & ((1U << 31) - 1);
}
/*! \brief whether current node is left child */
XGBOOST_DEVICE [[nodiscard]] bool IsLeftChild() const {
return (parent_ & (1U << 31)) != 0;
}
/*! \brief whether this node is deleted */
XGBOOST_DEVICE [[nodiscard]] bool IsDeleted() const {
return sindex_ == kDeletedNodeMarker;
}
/*! \brief whether current node is root */
XGBOOST_DEVICE [[nodiscard]] bool IsRoot() const { return parent_ == kInvalidNodeId; }
/*!
* \brief set the left child
* \param nid node id to right child
*/
XGBOOST_DEVICE void SetLeftChild(int nid) {
this->cleft_ = nid;
}
/*!
* \brief set the right child
* \param nid node id to right child
*/
XGBOOST_DEVICE void SetRightChild(int nid) {
this->cright_ = nid;
}
/*!
* \brief set split condition of current node
* \param split_index feature index to split
* \param split_cond split condition
* \param default_left the default direction when feature is unknown
*/
XGBOOST_DEVICE void SetSplit(unsigned split_index, SplitCondT split_cond,
bool default_left = false) {
if (default_left) split_index |= (1U << 31);
this->sindex_ = split_index;
(this->info_).split_cond = split_cond;
}
/*!
* \brief set the leaf value of the node
* \param value leaf value
* \param right right index, could be used to store
* additional information
*/
XGBOOST_DEVICE void SetLeaf(bst_float value, int right = kInvalidNodeId) {
(this->info_).leaf_value = value;
this->cleft_ = kInvalidNodeId;
this->cright_ = right;
}
/*! \brief mark that this node is deleted */
XGBOOST_DEVICE void MarkDelete() {
this->sindex_ = kDeletedNodeMarker;
}
/*! \brief Reuse this deleted node. */
XGBOOST_DEVICE void Reuse() {
this->sindex_ = 0;
}
// set parent
XGBOOST_DEVICE void SetParent(int pidx, bool is_left_child = true) {
if (is_left_child) pidx |= (1U << 31);
this->parent_ = pidx;
}
bool operator==(const Node& b) const {
return parent_ == b.parent_ && cleft_ == b.cleft_ &&
cright_ == b.cright_ && sindex_ == b.sindex_ &&
info_.leaf_value == b.info_.leaf_value;
}
[[nodiscard]] Node ByteSwap() const {
Node x = *this;
dmlc::ByteSwap(&x.parent_, sizeof(x.parent_), 1);
dmlc::ByteSwap(&x.cleft_, sizeof(x.cleft_), 1);
dmlc::ByteSwap(&x.cright_, sizeof(x.cright_), 1);
dmlc::ByteSwap(&x.sindex_, sizeof(x.sindex_), 1);
dmlc::ByteSwap(&x.info_, sizeof(x.info_), 1);
return x;
}
private:
/*!
* \brief in leaf node, we have weights, in non-leaf nodes,
* we have split condition
*/
union Info{
bst_float leaf_value;
SplitCondT split_cond;
};
// pointer to parent, highest bit is used to
// indicate whether it's a left child or not
int32_t parent_{kInvalidNodeId};
// pointer to left, right
int32_t cleft_{kInvalidNodeId}, cright_{kInvalidNodeId};
// split feature index, left split or right split depends on the highest bit
uint32_t sindex_{0};
// extra info
Info info_;
};
/*!
* \brief change a non leaf node to a leaf node, delete its children
* \param rid node id of the node
* \param value new leaf value
*/
void ChangeToLeaf(int rid, bst_float value) {
CHECK(nodes_[nodes_[rid].LeftChild() ].IsLeaf());
CHECK(nodes_[nodes_[rid].RightChild()].IsLeaf());
this->DeleteNode(nodes_[rid].LeftChild());
this->DeleteNode(nodes_[rid].RightChild());
nodes_[rid].SetLeaf(value);
}
/*!
* \brief collapse a non leaf node to a leaf node, delete its children
* \param rid node id of the node
* \param value new leaf value
*/
void CollapseToLeaf(int rid, bst_float value) {
if (nodes_[rid].IsLeaf()) return;
if (!nodes_[nodes_[rid].LeftChild() ].IsLeaf()) {
CollapseToLeaf(nodes_[rid].LeftChild(), 0.0f);
}
if (!nodes_[nodes_[rid].RightChild() ].IsLeaf()) {
CollapseToLeaf(nodes_[rid].RightChild(), 0.0f);
}
this->ChangeToLeaf(rid, value);
}
/*! \brief model parameter */
TreeParam param;
RegTree() {
param.Init(Args{});
nodes_.resize(param.num_nodes);
stats_.resize(param.num_nodes);
split_types_.resize(param.num_nodes, FeatureType::kNumerical);
split_categories_segments_.resize(param.num_nodes);
for (int i = 0; i < param.num_nodes; i++) {
nodes_[i].SetLeaf(0.0f);
nodes_[i].SetParent(kInvalidNodeId);
}
}
/**
* \brief Constructor that initializes the tree model with shape.
*/
explicit RegTree(bst_target_t n_targets, bst_feature_t n_features) : RegTree{} {
param.num_feature = n_features;
param.size_leaf_vector = n_targets;
if (n_targets > 1) {
this->p_mt_tree_.reset(new MultiTargetTree{&param});
}
}
/*! \brief get node given nid */
Node& operator[](int nid) {
return nodes_[nid];
}
/*! \brief get node given nid */
const Node& operator[](int nid) const {
return nodes_[nid];
}
/*! \brief get const reference to nodes */
[[nodiscard]] const std::vector<Node>& GetNodes() const { return nodes_; }
/*! \brief get const reference to stats */
[[nodiscard]] const std::vector<RTreeNodeStat>& GetStats() const { return stats_; }
/*! \brief get node statistics given nid */
RTreeNodeStat& Stat(int nid) {
return stats_[nid];
}
/*! \brief get node statistics given nid */
[[nodiscard]] const RTreeNodeStat& Stat(int nid) const {
return stats_[nid];
}
/*!
* \brief load model from stream
* \param fi input stream
*/
void Load(dmlc::Stream* fi);
/*!
* \brief save model to stream
* \param fo output stream
*/
void Save(dmlc::Stream* fo) const;
void LoadModel(Json const& in) override;
void SaveModel(Json* out) const override;
bool operator==(const RegTree& b) const {
return nodes_ == b.nodes_ && stats_ == b.stats_ &&
deleted_nodes_ == b.deleted_nodes_ && param == b.param;
}
/* \brief Iterate through all nodes in this tree.
*
* \param Function that accepts a node index, and returns false when iteration should
* stop, otherwise returns true.
*/
template <typename Func> void WalkTree(Func func) const {
std::stack<bst_node_t> nodes;
nodes.push(kRoot);
auto &self = *this;
while (!nodes.empty()) {
auto nidx = nodes.top();
nodes.pop();
if (!func(nidx)) {
return;
}
auto left = self[nidx].LeftChild();
auto right = self[nidx].RightChild();
if (left != RegTree::kInvalidNodeId) {
nodes.push(left);
}
if (right != RegTree::kInvalidNodeId) {
nodes.push(right);
}
}
}
/*!
* \brief Compares whether 2 trees are equal from a user's perspective. The equality
* compares only non-deleted nodes.
*
* \param b The other tree.
*/
[[nodiscard]] bool Equal(const RegTree& b) const;
/**
* \brief Expands a leaf node into two additional leaf nodes.
*
* \param nid The node index to expand.
* \param split_index Feature index of the split.
* \param split_value The split condition.
* \param default_left True to default left.
* \param base_weight The base weight, before learning rate.
* \param left_leaf_weight The left leaf weight for prediction, modified by learning rate.
* \param right_leaf_weight The right leaf weight for prediction, modified by learning rate.
* \param loss_change The loss change.
* \param sum_hess The sum hess.
* \param left_sum The sum hess of left leaf.
* \param right_sum The sum hess of right leaf.
* \param leaf_right_child The right child index of leaf, by default kInvalidNodeId,
* some updaters use the right child index of leaf as a marker
*/
void ExpandNode(bst_node_t nid, unsigned split_index, bst_float split_value,
bool default_left, bst_float base_weight,
bst_float left_leaf_weight, bst_float right_leaf_weight,
bst_float loss_change, float sum_hess, float left_sum,
float right_sum,
bst_node_t leaf_right_child = kInvalidNodeId);
void ExpandNode(bst_node_t nidx, bst_feature_t split_index, float split_cond, bool default_left,
linalg::VectorView<float const> base_weight,
linalg::VectorView<float const> left_weight,
linalg::VectorView<float const> right_weight);
/**
* \brief Expands a leaf node with categories
*
* \param nid The node index to expand.
* \param split_index Feature index of the split.
* \param split_cat The bitset containing categories
* \param default_left True to default left.
* \param base_weight The base weight, before learning rate.
* \param left_leaf_weight The left leaf weight for prediction, modified by learning rate.
* \param right_leaf_weight The right leaf weight for prediction, modified by learning rate.
* \param loss_change The loss change.
* \param sum_hess The sum hess.
* \param left_sum The sum hess of left leaf.
* \param right_sum The sum hess of right leaf.
*/
void ExpandCategorical(bst_node_t nid, bst_feature_t split_index,
common::Span<const uint32_t> split_cat, bool default_left,
bst_float base_weight, bst_float left_leaf_weight,
bst_float right_leaf_weight, bst_float loss_change, float sum_hess,
float left_sum, float right_sum);
[[nodiscard]] bool HasCategoricalSplit() const {
return !split_categories_.empty();
}
/**
* \brief Whether this is a multi-target tree.
*/
[[nodiscard]] bool IsMultiTarget() const { return static_cast<bool>(p_mt_tree_); }
[[nodiscard]] bst_target_t NumTargets() const { return param.size_leaf_vector; }
[[nodiscard]] auto GetMultiTargetTree() const {
CHECK(IsMultiTarget());
return p_mt_tree_.get();
}
/*!
* \brief get current depth
* \param nid node id
*/
[[nodiscard]] std::int32_t GetDepth(bst_node_t nid) const {
if (IsMultiTarget()) {
return this->p_mt_tree_->Depth(nid);
}
int depth = 0;
while (!nodes_[nid].IsRoot()) {
++depth;
nid = nodes_[nid].Parent();
}
return depth;
}
void SetLeaf(bst_node_t nidx, linalg::VectorView<float const> weight) {
CHECK(IsMultiTarget());
return this->p_mt_tree_->SetLeaf(nidx, weight);
}
/*!
* \brief get maximum depth
* \param nid node id
*/
[[nodiscard]] int MaxDepth(int nid) const {
if (nodes_[nid].IsLeaf()) return 0;
return std::max(MaxDepth(nodes_[nid].LeftChild())+1,
MaxDepth(nodes_[nid].RightChild())+1);
}
/*!
* \brief get maximum depth
*/
int MaxDepth() {
return MaxDepth(0);
}
/*! \brief number of extra nodes besides the root */
[[nodiscard]] int NumExtraNodes() const {
return param.num_nodes - 1 - param.num_deleted;
}
/* \brief Count number of leaves in tree. */
[[nodiscard]] bst_node_t GetNumLeaves() const;
[[nodiscard]] bst_node_t GetNumSplitNodes() const;
/*!
* \brief dense feature vector that can be taken by RegTree
* and can be construct from sparse feature vector.
*/
struct FVec {
/*!
* \brief initialize the vector with size vector
* \param size The size of the feature vector.
*/
void Init(size_t size);
/*!
* \brief fill the vector with sparse vector
* \param inst The sparse instance to fill.
*/
void Fill(const SparsePage::Inst& inst);
/*!
* \brief drop the trace after fill, must be called after fill.
* \param inst The sparse instance to drop.
*/
void Drop(const SparsePage::Inst& inst);
/*!
* \brief returns the size of the feature vector
* \return the size of the feature vector
*/
[[nodiscard]] size_t Size() const;
/*!
* \brief get ith value
* \param i feature index.
* \return the i-th feature value
*/
[[nodiscard]] bst_float GetFvalue(size_t i) const;
/*!
* \brief check whether i-th entry is missing
* \param i feature index.
* \return whether i-th value is missing.
*/
[[nodiscard]] bool IsMissing(size_t i) const;
[[nodiscard]] bool HasMissing() const;
private:
/*!
* \brief a union value of value and flag
* when flag == -1, this indicate the value is missing
*/
union Entry {
bst_float fvalue;
int flag;
};
std::vector<Entry> data_;
bool has_missing_;
};
/*!
* \brief calculate the approximate feature contributions for the given root
* \param feat dense feature vector, if the feature is missing the field is set to NaN
* \param out_contribs output vector to hold the contributions
*/
void CalculateContributionsApprox(const RegTree::FVec& feat,
std::vector<float>* mean_values,
bst_float* out_contribs) const;
/*!
* \brief dump the model in the requested format as a text string
* \param fmap feature map that may help give interpretations of feature
* \param with_stats whether dump out statistics as well
* \param format the format to dump the model in
* \return the string of dumped model
*/
[[nodiscard]] std::string DumpModel(const FeatureMap& fmap, bool with_stats,
std::string format) const;
/*!
* \brief Get split type for a node.
* \param nidx Index of node.
* \return The type of this split. For leaf node it's always kNumerical.
*/
[[nodiscard]] FeatureType NodeSplitType(bst_node_t nidx) const { return split_types_.at(nidx); }
/*!
* \brief Get split types for all nodes.
*/
[[nodiscard]] std::vector<FeatureType> const& GetSplitTypes() const {
return split_types_;
}
[[nodiscard]] common::Span<uint32_t const> GetSplitCategories() const {
return split_categories_;
}
/*!
* \brief Get the bit storage for categories
*/
[[nodiscard]] common::Span<uint32_t const> NodeCats(bst_node_t nidx) const {
auto node_ptr = GetCategoriesMatrix().node_ptr;
auto categories = GetCategoriesMatrix().categories;
auto segment = node_ptr[nidx];
auto node_cats = categories.subspan(segment.beg, segment.size);
return node_cats;
}
[[nodiscard]] auto const& GetSplitCategoriesPtr() const { return split_categories_segments_; }
/**
* \brief CSR-like matrix for categorical splits.
*
* The fields of split_categories_segments_[i] are set such that the range
* node_ptr[beg:(beg+size)] stores the bitset for the matching categories for the
* i-th node.
*/
struct CategoricalSplitMatrix {
struct Segment {
std::size_t beg{0};
std::size_t size{0};
};
common::Span<FeatureType const> split_type;
common::Span<uint32_t const> categories;
common::Span<Segment const> node_ptr;
};
[[nodiscard]] CategoricalSplitMatrix GetCategoriesMatrix() const {
CategoricalSplitMatrix view;
view.split_type = common::Span<FeatureType const>(this->GetSplitTypes());
view.categories = this->GetSplitCategories();
view.node_ptr = common::Span<CategoricalSplitMatrix::Segment const>(split_categories_segments_);
return view;
}
[[nodiscard]] bst_feature_t SplitIndex(bst_node_t nidx) const {
if (IsMultiTarget()) {
return this->p_mt_tree_->SplitIndex(nidx);
}
return (*this)[nidx].SplitIndex();
}
[[nodiscard]] float SplitCond(bst_node_t nidx) const {
if (IsMultiTarget()) {
return this->p_mt_tree_->SplitCond(nidx);
}
return (*this)[nidx].SplitCond();
}
[[nodiscard]] bool DefaultLeft(bst_node_t nidx) const {
if (IsMultiTarget()) {
return this->p_mt_tree_->DefaultLeft(nidx);
}
return (*this)[nidx].DefaultLeft();
}
[[nodiscard]] bool IsRoot(bst_node_t nidx) const {
if (IsMultiTarget()) {
return nidx == kRoot;
}
return (*this)[nidx].IsRoot();
}
[[nodiscard]] bool IsLeaf(bst_node_t nidx) const {
if (IsMultiTarget()) {
return this->p_mt_tree_->IsLeaf(nidx);
}
return (*this)[nidx].IsLeaf();
}
[[nodiscard]] bst_node_t Parent(bst_node_t nidx) const {
if (IsMultiTarget()) {
return this->p_mt_tree_->Parent(nidx);
}
return (*this)[nidx].Parent();
}
[[nodiscard]] bst_node_t LeftChild(bst_node_t nidx) const {
if (IsMultiTarget()) {
return this->p_mt_tree_->LeftChild(nidx);
}
return (*this)[nidx].LeftChild();
}
[[nodiscard]] bst_node_t RightChild(bst_node_t nidx) const {
if (IsMultiTarget()) {
return this->p_mt_tree_->RightChild(nidx);
}
return (*this)[nidx].RightChild();
}
[[nodiscard]] bool IsLeftChild(bst_node_t nidx) const {
if (IsMultiTarget()) {
CHECK_NE(nidx, kRoot);
auto p = this->p_mt_tree_->Parent(nidx);
return nidx == this->p_mt_tree_->LeftChild(p);
}
return (*this)[nidx].IsLeftChild();
}
[[nodiscard]] bst_node_t Size() const {
if (IsMultiTarget()) {
return this->p_mt_tree_->Size();
}
return this->nodes_.size();
}
private:
template <bool typed>
void LoadCategoricalSplit(Json const& in);
void SaveCategoricalSplit(Json* p_out) const;
// vector of nodes
std::vector<Node> nodes_;
// free node space, used during training process
std::vector<int> deleted_nodes_;
// stats of nodes
std::vector<RTreeNodeStat> stats_;
std::vector<FeatureType> split_types_;
// Categories for each internal node.
std::vector<uint32_t> split_categories_;
// Ptr to split categories of each node.
std::vector<CategoricalSplitMatrix::Segment> split_categories_segments_;
// ptr to multi-target tree with vector leaf.
CopyUniquePtr<MultiTargetTree> p_mt_tree_;
// allocate a new node,
// !!!!!! NOTE: may cause BUG here, nodes.resize
bst_node_t AllocNode() {
if (param.num_deleted != 0) {
int nid = deleted_nodes_.back();
deleted_nodes_.pop_back();
nodes_[nid].Reuse();
--param.num_deleted;
return nid;
}
int nd = param.num_nodes++;
CHECK_LT(param.num_nodes, std::numeric_limits<int>::max())
<< "number of nodes in the tree exceed 2^31";
nodes_.resize(param.num_nodes);
stats_.resize(param.num_nodes);
split_types_.resize(param.num_nodes, FeatureType::kNumerical);
split_categories_segments_.resize(param.num_nodes);
return nd;
}
// delete a tree node, keep the parent field to allow trace back
void DeleteNode(int nid) {
CHECK_GE(nid, 1);
auto pid = (*this)[nid].Parent();
if (nid == (*this)[pid].LeftChild()) {
(*this)[pid].SetLeftChild(kInvalidNodeId);
} else {
(*this)[pid].SetRightChild(kInvalidNodeId);
}
deleted_nodes_.push_back(nid);
nodes_[nid].MarkDelete();
++param.num_deleted;
}
};
inline void RegTree::FVec::Init(size_t size) {
Entry e; e.flag = -1;
data_.resize(size);
std::fill(data_.begin(), data_.end(), e);
has_missing_ = true;
}
inline void RegTree::FVec::Fill(const SparsePage::Inst& inst) {
size_t feature_count = 0;
for (auto const& entry : inst) {
if (entry.index >= data_.size()) {
continue;
}
data_[entry.index].fvalue = entry.fvalue;
++feature_count;
}
has_missing_ = data_.size() != feature_count;
}
inline void RegTree::FVec::Drop(const SparsePage::Inst& inst) {
for (auto const& entry : inst) {
if (entry.index >= data_.size()) {
continue;
}
data_[entry.index].flag = -1;
}
has_missing_ = true;
}
inline size_t RegTree::FVec::Size() const {
return data_.size();
}
inline bst_float RegTree::FVec::GetFvalue(size_t i) const {
return data_[i].fvalue;
}
inline bool RegTree::FVec::IsMissing(size_t i) const {
return data_[i].flag == -1;
}
inline bool RegTree::FVec::HasMissing() const {
return has_missing_;
}
// Multi-target tree not yet implemented error
inline StringView MTNotImplemented() {
return " support for multi-target tree is not yet implemented.";
}
} // namespace xgboost
#endif // XGBOOST_TREE_MODEL_H_