169 lines
5.8 KiB
C++
169 lines
5.8 KiB
C++
/*!
|
|
* Copyright 2014-2022 by XGBoost Contributors
|
|
* \file updater_refresh.cc
|
|
* \brief refresh the statistics and leaf value on the tree on the dataset
|
|
* \author Tianqi Chen
|
|
*/
|
|
#include <rabit/rabit.h>
|
|
#include <xgboost/tree_updater.h>
|
|
|
|
#include <vector>
|
|
#include <limits>
|
|
|
|
#include "xgboost/json.h"
|
|
#include "./param.h"
|
|
#include "../common/io.h"
|
|
#include "../common/threading_utils.h"
|
|
#include "../predictor/predict_fn.h"
|
|
|
|
namespace xgboost {
|
|
namespace tree {
|
|
|
|
DMLC_REGISTRY_FILE_TAG(updater_refresh);
|
|
|
|
/*! \brief pruner that prunes a tree after growing finishs */
|
|
class TreeRefresher: public TreeUpdater {
|
|
public:
|
|
void Configure(const Args& args) override {
|
|
param_.UpdateAllowUnknown(args);
|
|
}
|
|
void LoadConfig(Json const& in) override {
|
|
auto const& config = get<Object const>(in);
|
|
FromJson(config.at("train_param"), &this->param_);
|
|
}
|
|
void SaveConfig(Json* p_out) const override {
|
|
auto& out = *p_out;
|
|
out["train_param"] = ToJson(param_);
|
|
}
|
|
char const* Name() const override {
|
|
return "refresh";
|
|
}
|
|
bool CanModifyTree() const override {
|
|
return true;
|
|
}
|
|
// update the tree, do pruning
|
|
void Update(HostDeviceVector<GradientPair> *gpair,
|
|
DMatrix *p_fmat,
|
|
const std::vector<RegTree*> &trees) override {
|
|
if (trees.size() == 0) return;
|
|
const std::vector<GradientPair> &gpair_h = gpair->ConstHostVector();
|
|
// thread temporal space
|
|
std::vector<std::vector<GradStats> > stemp;
|
|
std::vector<RegTree::FVec> fvec_temp;
|
|
// setup temp space for each thread
|
|
const int nthread = ctx_->Threads();
|
|
fvec_temp.resize(nthread, RegTree::FVec());
|
|
stemp.resize(nthread, std::vector<GradStats>());
|
|
dmlc::OMPException exc;
|
|
#pragma omp parallel num_threads(nthread)
|
|
{
|
|
exc.Run([&]() {
|
|
int tid = omp_get_thread_num();
|
|
int num_nodes = 0;
|
|
for (auto tree : trees) {
|
|
num_nodes += tree->param.num_nodes;
|
|
}
|
|
stemp[tid].resize(num_nodes, GradStats());
|
|
std::fill(stemp[tid].begin(), stemp[tid].end(), GradStats());
|
|
fvec_temp[tid].Init(trees[0]->param.num_feature);
|
|
});
|
|
}
|
|
exc.Rethrow();
|
|
// if it is C++11, use lazy evaluation for Allreduce,
|
|
// to gain speedup in recovery
|
|
auto lazy_get_stats = [&]() {
|
|
const MetaInfo &info = p_fmat->Info();
|
|
// start accumulating statistics
|
|
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
|
|
auto page = batch.GetView();
|
|
CHECK_LT(batch.Size(), std::numeric_limits<unsigned>::max());
|
|
const auto nbatch = static_cast<bst_omp_uint>(batch.Size());
|
|
common::ParallelFor(nbatch, ctx_->Threads(), [&](bst_omp_uint i) {
|
|
SparsePage::Inst inst = page[i];
|
|
const int tid = omp_get_thread_num();
|
|
const auto ridx = static_cast<bst_uint>(batch.base_rowid + i);
|
|
RegTree::FVec &feats = fvec_temp[tid];
|
|
feats.Fill(inst);
|
|
int offset = 0;
|
|
for (auto tree : trees) {
|
|
AddStats(*tree, feats, gpair_h, info, ridx,
|
|
dmlc::BeginPtr(stemp[tid]) + offset);
|
|
offset += tree->param.num_nodes;
|
|
}
|
|
feats.Drop(inst);
|
|
});
|
|
}
|
|
// aggregate the statistics
|
|
auto num_nodes = static_cast<int>(stemp[0].size());
|
|
common::ParallelFor(num_nodes, ctx_->Threads(), [&](int nid) {
|
|
for (int tid = 1; tid < nthread; ++tid) {
|
|
stemp[0][nid].Add(stemp[tid][nid]);
|
|
}
|
|
});
|
|
};
|
|
reducer_.Allreduce(dmlc::BeginPtr(stemp[0]), stemp[0].size(), lazy_get_stats);
|
|
// rescale learning rate according to size of trees
|
|
float lr = param_.learning_rate;
|
|
param_.learning_rate = lr / trees.size();
|
|
int offset = 0;
|
|
for (auto tree : trees) {
|
|
this->Refresh(dmlc::BeginPtr(stemp[0]) + offset, 0, tree);
|
|
offset += tree->param.num_nodes;
|
|
}
|
|
// set learning rate back
|
|
param_.learning_rate = lr;
|
|
}
|
|
|
|
private:
|
|
inline static void AddStats(const RegTree &tree,
|
|
const RegTree::FVec &feat,
|
|
const std::vector<GradientPair> &gpair,
|
|
const MetaInfo&,
|
|
const bst_uint ridx,
|
|
GradStats *gstats) {
|
|
// start from groups that belongs to current data
|
|
auto pid = 0;
|
|
gstats[pid].Add(gpair[ridx]);
|
|
auto const& cats = tree.GetCategoriesMatrix();
|
|
// traverse tree
|
|
while (!tree[pid].IsLeaf()) {
|
|
unsigned split_index = tree[pid].SplitIndex();
|
|
pid = predictor::GetNextNode<true, true>(
|
|
tree[pid], pid, feat.GetFvalue(split_index), feat.IsMissing(split_index),
|
|
cats);
|
|
gstats[pid].Add(gpair[ridx]);
|
|
}
|
|
}
|
|
inline void Refresh(const GradStats *gstats,
|
|
int nid, RegTree *p_tree) {
|
|
RegTree &tree = *p_tree;
|
|
tree.Stat(nid).base_weight =
|
|
static_cast<bst_float>(CalcWeight(param_, gstats[nid]));
|
|
tree.Stat(nid).sum_hess = static_cast<bst_float>(gstats[nid].sum_hess);
|
|
if (tree[nid].IsLeaf()) {
|
|
if (param_.refresh_leaf) {
|
|
tree[nid].SetLeaf(tree.Stat(nid).base_weight * param_.learning_rate);
|
|
}
|
|
} else {
|
|
tree.Stat(nid).loss_chg = static_cast<bst_float>(
|
|
xgboost::tree::CalcGain(param_, gstats[tree[nid].LeftChild()]) +
|
|
xgboost::tree::CalcGain(param_, gstats[tree[nid].RightChild()]) -
|
|
xgboost::tree::CalcGain(param_, gstats[nid]));
|
|
this->Refresh(gstats, tree[nid].LeftChild(), p_tree);
|
|
this->Refresh(gstats, tree[nid].RightChild(), p_tree);
|
|
}
|
|
}
|
|
// training parameter
|
|
TrainParam param_;
|
|
// reducer
|
|
rabit::Reducer<GradStats, GradStats::Reduce> reducer_;
|
|
};
|
|
|
|
XGBOOST_REGISTER_TREE_UPDATER(TreeRefresher, "refresh")
|
|
.describe("Refresher that refreshes the weight and statistics according to data.")
|
|
.set_body([](ObjInfo) {
|
|
return new TreeRefresher();
|
|
});
|
|
} // namespace tree
|
|
} // namespace xgboost
|