173 lines
5.3 KiB
C++
173 lines
5.3 KiB
C++
/**
|
|
* Copyright 2023 by XGBoost contributors
|
|
*
|
|
* Higher level functions built on top the Communicator API, taking care of behavioral differences
|
|
* between row-split vs column-split distributed training, and horizontal vs vertical federated
|
|
* learning.
|
|
*/
|
|
#pragma once
|
|
#include <xgboost/data.h>
|
|
|
|
#include <limits>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "communicator-inl.h"
|
|
|
|
namespace xgboost {
|
|
namespace collective {
|
|
|
|
/**
|
|
* @brief Apply the given function where the labels are.
|
|
*
|
|
* Normally all the workers have access to the labels, so the function is just applied locally. In
|
|
* vertical federated learning, we assume labels are only available on worker 0, so the function is
|
|
* applied there, with the results broadcast to other workers.
|
|
*
|
|
* @tparam Function The function used to calculate the results.
|
|
* @param info MetaInfo about the DMatrix.
|
|
* @param buffer The buffer storing the results.
|
|
* @param size The size of the buffer.
|
|
* @param function The function used to calculate the results.
|
|
*/
|
|
template <typename Function>
|
|
void ApplyWithLabels(MetaInfo const& info, void* buffer, size_t size, Function&& function) {
|
|
if (info.IsVerticalFederated()) {
|
|
// We assume labels are only available on worker 0, so the calculation is done there and result
|
|
// broadcast to other workers.
|
|
std::string message;
|
|
if (collective::GetRank() == 0) {
|
|
try {
|
|
std::forward<Function>(function)();
|
|
} catch (dmlc::Error& e) {
|
|
message = e.what();
|
|
}
|
|
}
|
|
|
|
collective::Broadcast(&message, 0);
|
|
if (message.empty()) {
|
|
collective::Broadcast(buffer, size, 0);
|
|
} else {
|
|
LOG(FATAL) << &message[0];
|
|
}
|
|
} else {
|
|
std::forward<Function>(function)();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Apply the given function where the labels are.
|
|
*
|
|
* Normally all the workers have access to the labels, so the function is just applied locally. In
|
|
* vertical federated learning, we assume labels are only available on worker 0, so the function is
|
|
* applied there, with the results broadcast to other workers.
|
|
*
|
|
* @tparam T Type of the HostDeviceVector storing the results.
|
|
* @tparam Function The function used to calculate the results.
|
|
* @param info MetaInfo about the DMatrix.
|
|
* @param result The HostDeviceVector storing the results.
|
|
* @param function The function used to calculate the results.
|
|
*/
|
|
template <typename T, typename Function>
|
|
void ApplyWithLabels(MetaInfo const& info, HostDeviceVector<T>* result, Function&& function) {
|
|
if (info.IsVerticalFederated()) {
|
|
// We assume labels are only available on worker 0, so the calculation is done there and result
|
|
// broadcast to other workers.
|
|
std::string message;
|
|
if (collective::GetRank() == 0) {
|
|
try {
|
|
std::forward<Function>(function)();
|
|
} catch (dmlc::Error& e) {
|
|
message = e.what();
|
|
}
|
|
}
|
|
|
|
collective::Broadcast(&message, 0);
|
|
if (!message.empty()) {
|
|
LOG(FATAL) << &message[0];
|
|
return;
|
|
}
|
|
|
|
std::size_t size{};
|
|
if (collective::GetRank() == 0) {
|
|
size = result->Size();
|
|
}
|
|
collective::Broadcast(&size, sizeof(std::size_t), 0);
|
|
|
|
result->Resize(size);
|
|
collective::Broadcast(result->HostPointer(), size * sizeof(T), 0);
|
|
} else {
|
|
std::forward<Function>(function)();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Find the global max of the given value across all workers.
|
|
*
|
|
* This only applies when the data is split row-wise (horizontally). When data is split
|
|
* column-wise (vertically), the local value is returned.
|
|
*
|
|
* @tparam T The type of the value.
|
|
* @param info MetaInfo about the DMatrix.
|
|
* @param value The input for finding the global max.
|
|
* @return The global max of the input.
|
|
*/
|
|
template <typename T>
|
|
T GlobalMax(MetaInfo const& info, T value) {
|
|
if (info.IsRowSplit()) {
|
|
collective::Allreduce<collective::Operation::kMax>(&value, 1);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
/**
|
|
* @brief Find the global sum of the given values across all workers.
|
|
*
|
|
* This only applies when the data is split row-wise (horizontally). When data is split
|
|
* column-wise (vertically), the original values are returned.
|
|
*
|
|
* @tparam T The type of the values.
|
|
* @param info MetaInfo about the DMatrix.
|
|
* @param values Pointer to the inputs to sum.
|
|
* @param size Number of values to sum.
|
|
*/
|
|
template <typename T>
|
|
void GlobalSum(MetaInfo const& info, T* values, size_t size) {
|
|
if (info.IsRowSplit()) {
|
|
collective::Allreduce<collective::Operation::kSum>(values, size);
|
|
}
|
|
}
|
|
|
|
template <typename Container>
|
|
void GlobalSum(MetaInfo const& info, Container* values) {
|
|
GlobalSum(info, values->data(), values->size());
|
|
}
|
|
|
|
/**
|
|
* @brief Find the global ratio of the given two values across all workers.
|
|
*
|
|
* This only applies when the data is split row-wise (horizontally). When data is split
|
|
* column-wise (vertically), the local ratio is returned.
|
|
*
|
|
* @tparam T The type of the values.
|
|
* @param info MetaInfo about the DMatrix.
|
|
* @param dividend The dividend of the ratio.
|
|
* @param divisor The divisor of the ratio.
|
|
* @return The global ratio of the two inputs.
|
|
*/
|
|
template <typename T>
|
|
T GlobalRatio(MetaInfo const& info, T dividend, T divisor) {
|
|
std::array<T, 2> results{dividend, divisor};
|
|
GlobalSum(info, &results);
|
|
std::tie(dividend, divisor) = std::tuple_cat(results);
|
|
if (divisor <= 0) {
|
|
return std::numeric_limits<T>::quiet_NaN();
|
|
} else {
|
|
return dividend / divisor;
|
|
}
|
|
}
|
|
|
|
} // namespace collective
|
|
} // namespace xgboost
|