xgboost/tests/cpp/tree/test_approx.cc
2023-03-13 19:31:05 +08:00

226 lines
8.0 KiB
C++

/**
* Copyright 2021-2023 by XGBoost contributors.
*/
#include <gtest/gtest.h>
#include "../../../src/common/numeric.h"
#include "../../../src/tree/common_row_partitioner.h"
#include "../helpers.h"
#include "test_partitioner.h"
namespace xgboost {
namespace tree {
namespace {
std::vector<float> GenerateHess(size_t n_samples) {
auto grad = GenerateRandomGradients(n_samples);
std::vector<float> hess(grad.Size());
std::transform(grad.HostVector().cbegin(), grad.HostVector().cend(), hess.begin(),
[](auto gpair) { return gpair.GetHess(); });
return hess;
}
} // anonymous namespace
TEST(Approx, Partitioner) {
size_t n_samples = 1024, n_features = 1, base_rowid = 0;
Context ctx;
ctx.InitAllowUnknown(Args{});
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false};
ASSERT_EQ(partitioner.base_rowid, base_rowid);
ASSERT_EQ(partitioner.Size(), 1);
ASSERT_EQ(partitioner.Partitions()[0].Size(), n_samples);
auto const Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true);
auto hess = GenerateHess(n_samples);
std::vector<CPUExpandEntry> candidates{{0, 0}};
candidates.front().split.loss_chg = 0.4;
for (auto const& page : Xy->GetBatches<GHistIndexMatrix>({64, hess, true})) {
bst_feature_t const split_ind = 0;
{
auto min_value = page.cut.MinValues()[split_ind];
RegTree tree;
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false};
GetSplit(&tree, min_value, &candidates);
partitioner.UpdatePosition(&ctx, page, candidates, &tree);
ASSERT_EQ(partitioner.Size(), 3);
ASSERT_EQ(partitioner[1].Size(), 0);
ASSERT_EQ(partitioner[2].Size(), n_samples);
}
{
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false};
auto ptr = page.cut.Ptrs()[split_ind + 1];
float split_value = page.cut.Values().at(ptr / 2);
RegTree tree;
GetSplit(&tree, split_value, &candidates);
partitioner.UpdatePosition(&ctx, page, candidates, &tree);
auto left_nidx = tree[RegTree::kRoot].LeftChild();
auto elem = partitioner[left_nidx];
ASSERT_LT(elem.Size(), n_samples);
ASSERT_GT(elem.Size(), 1);
for (auto it = elem.begin; it != elem.end; ++it) {
auto value = page.cut.Values().at(page.index[*it]);
ASSERT_LE(value, split_value);
}
auto right_nidx = tree[RegTree::kRoot].RightChild();
elem = partitioner[right_nidx];
for (auto it = elem.begin; it != elem.end; ++it) {
auto value = page.cut.Values().at(page.index[*it]);
ASSERT_GT(value, split_value) << *it;
}
}
}
}
namespace {
void TestColumnSplitPartitioner(size_t n_samples, size_t base_rowid, std::shared_ptr<DMatrix> Xy,
std::vector<float>* hess, float min_value, float mid_value,
CommonRowPartitioner const& expected_mid_partitioner) {
auto dmat =
std::unique_ptr<DMatrix>{Xy->SliceCol(collective::GetWorldSize(), collective::GetRank())};
std::vector<CPUExpandEntry> candidates{{0, 0}};
candidates.front().split.loss_chg = 0.4;
Context ctx;
ctx.InitAllowUnknown(Args{});
for (auto const& page : dmat->GetBatches<GHistIndexMatrix>({64, *hess, true})) {
{
RegTree tree;
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, true};
GetSplit(&tree, min_value, &candidates);
partitioner.UpdatePosition(&ctx, page, candidates, &tree);
ASSERT_EQ(partitioner.Size(), 3);
ASSERT_EQ(partitioner[1].Size(), 0);
ASSERT_EQ(partitioner[2].Size(), n_samples);
}
{
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, true};
RegTree tree;
GetSplit(&tree, mid_value, &candidates);
partitioner.UpdatePosition(&ctx, page, candidates, &tree);
auto left_nidx = tree[RegTree::kRoot].LeftChild();
auto elem = partitioner[left_nidx];
ASSERT_LT(elem.Size(), n_samples);
ASSERT_GT(elem.Size(), 1);
auto expected_elem = expected_mid_partitioner[left_nidx];
ASSERT_EQ(elem.Size(), expected_elem.Size());
for (auto it = elem.begin, eit = expected_elem.begin; it != elem.end; ++it, ++eit) {
ASSERT_EQ(*it, *eit);
}
auto right_nidx = tree[RegTree::kRoot].RightChild();
elem = partitioner[right_nidx];
expected_elem = expected_mid_partitioner[right_nidx];
ASSERT_EQ(elem.Size(), expected_elem.Size());
for (auto it = elem.begin, eit = expected_elem.begin; it != elem.end; ++it, ++eit) {
ASSERT_EQ(*it, *eit);
}
}
}
}
} // anonymous namespace
TEST(Approx, PartitionerColSplit) {
size_t n_samples = 1024, n_features = 16, base_rowid = 0;
auto const Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true);
auto hess = GenerateHess(n_samples);
std::vector<CPUExpandEntry> candidates{{0, 0}};
candidates.front().split.loss_chg = 0.4;
float min_value, mid_value;
Context ctx;
ctx.InitAllowUnknown(Args{});
CommonRowPartitioner mid_partitioner{&ctx, n_samples, base_rowid, false};
for (auto const& page : Xy->GetBatches<GHistIndexMatrix>({64, hess, true})) {
bst_feature_t const split_ind = 0;
min_value = page.cut.MinValues()[split_ind];
auto ptr = page.cut.Ptrs()[split_ind + 1];
mid_value = page.cut.Values().at(ptr / 2);
RegTree tree;
GetSplit(&tree, mid_value, &candidates);
mid_partitioner.UpdatePosition(&ctx, page, candidates, &tree);
}
auto constexpr kWorkers = 4;
RunWithInMemoryCommunicator(kWorkers, TestColumnSplitPartitioner, n_samples, base_rowid, Xy,
&hess, min_value, mid_value, mid_partitioner);
}
namespace {
void TestLeafPartition(size_t n_samples) {
size_t const n_features = 2, base_rowid = 0;
Context ctx;
common::RowSetCollection row_set;
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false};
auto Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true);
std::vector<CPUExpandEntry> candidates{{0, 0}};
candidates.front().split.loss_chg = 0.4;
RegTree tree;
std::vector<float> hess(n_samples, 0);
// emulate sampling
auto not_sampled = [](size_t i) {
size_t const kSampleFactor{3};
return i % kSampleFactor != 0;
};
for (size_t i = 0; i < hess.size(); ++i) {
if (not_sampled(i)) {
hess[i] = 1.0f;
}
}
std::vector<size_t> h_nptr;
float split_value{0};
for (auto const& page : Xy->GetBatches<GHistIndexMatrix>({Context::kCpuId, 64})) {
bst_feature_t const split_ind = 0;
auto ptr = page.cut.Ptrs()[split_ind + 1];
split_value = page.cut.Values().at(ptr / 2);
GetSplit(&tree, split_value, &candidates);
partitioner.UpdatePosition(&ctx, page, candidates, &tree);
std::vector<bst_node_t> position;
partitioner.LeafPartition(&ctx, tree, hess, &position);
std::sort(position.begin(), position.end());
size_t beg = std::distance(
position.begin(),
std::find_if(position.begin(), position.end(), [&](bst_node_t nidx) { return nidx >= 0; }));
std::vector<size_t> nptr;
common::RunLengthEncode(position.cbegin() + beg, position.cend(), &nptr);
std::transform(nptr.begin(), nptr.end(), nptr.begin(), [&](size_t x) { return x + beg; });
auto n_uniques = std::unique(position.begin() + beg, position.end()) - (position.begin() + beg);
ASSERT_EQ(nptr.size(), n_uniques + 1);
ASSERT_EQ(nptr[0], beg);
ASSERT_EQ(nptr.back(), n_samples);
h_nptr = nptr;
}
if (h_nptr.front() == n_samples) {
return;
}
ASSERT_GE(h_nptr.size(), 2);
for (auto const& page : Xy->GetBatches<SparsePage>()) {
auto batch = page.GetView();
size_t left{0};
for (size_t i = 0; i < batch.Size(); ++i) {
if (not_sampled(i) && batch[i].front().fvalue < split_value) {
left++;
}
}
ASSERT_EQ(left, h_nptr[1] - h_nptr[0]); // equal to number of sampled assigned to left
}
}
} // anonymous namespace
TEST(Approx, LeafPartition) {
for (auto n_samples : {0ul, 1ul, 128ul, 256ul}) {
TestLeafPartition(n_samples);
}
}
} // namespace tree
} // namespace xgboost