* Add a new ctor to tensor for `initilizer_list`. * Change labels from host device vector to tensor. * Rename the field from `labels_` to `labels` since it's a public member.
428 lines
14 KiB
C++
428 lines
14 KiB
C++
/*!
|
|
* Copyright 2017-2020 XGBoost contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <vector>
|
|
#include <thread>
|
|
#include "helpers.h"
|
|
#include <dmlc/filesystem.h>
|
|
|
|
#include <xgboost/learner.h>
|
|
#include <xgboost/version_config.h>
|
|
#include "xgboost/json.h"
|
|
#include "../../src/common/io.h"
|
|
#include "../../src/common/random.h"
|
|
|
|
namespace xgboost {
|
|
|
|
TEST(Learner, Basic) {
|
|
using Arg = std::pair<std::string, std::string>;
|
|
auto args = {Arg("tree_method", "exact")};
|
|
auto mat_ptr = RandomDataGenerator{10, 10, 0.0f}.GenerateDMatrix();
|
|
auto learner = std::unique_ptr<Learner>(Learner::Create({mat_ptr}));
|
|
learner->SetParams(args);
|
|
|
|
|
|
auto major = XGBOOST_VER_MAJOR;
|
|
auto minor = XGBOOST_VER_MINOR;
|
|
auto patch = XGBOOST_VER_PATCH;
|
|
|
|
static_assert(std::is_integral<decltype(major)>::value, "Wrong major version type");
|
|
static_assert(std::is_integral<decltype(minor)>::value, "Wrong minor version type");
|
|
static_assert(std::is_integral<decltype(patch)>::value, "Wrong patch version type");
|
|
}
|
|
|
|
TEST(Learner, ParameterValidation) {
|
|
ConsoleLogger::Configure({{"verbosity", "2"}});
|
|
size_t constexpr kRows = 1;
|
|
size_t constexpr kCols = 1;
|
|
auto p_mat = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix();
|
|
|
|
auto learner = std::unique_ptr<Learner>(Learner::Create({p_mat}));
|
|
learner->SetParam("validate_parameters", "1");
|
|
learner->SetParam("Knock-Knock", "Who's-there?");
|
|
learner->SetParam("Silence", "....");
|
|
learner->SetParam("tree_method", "exact");
|
|
|
|
testing::internal::CaptureStderr();
|
|
learner->Configure();
|
|
std::string output = testing::internal::GetCapturedStderr();
|
|
|
|
ASSERT_TRUE(output.find(R"(Parameters: { "Knock-Knock", "Silence" })") != std::string::npos);
|
|
|
|
// whitespace
|
|
learner->SetParam("tree method", "exact");
|
|
EXPECT_THROW(learner->Configure(), dmlc::Error);
|
|
}
|
|
|
|
TEST(Learner, CheckGroup) {
|
|
using Arg = std::pair<std::string, std::string>;
|
|
size_t constexpr kNumGroups = 4;
|
|
size_t constexpr kNumRows = 17;
|
|
bst_feature_t constexpr kNumCols = 15;
|
|
|
|
std::shared_ptr<DMatrix> p_mat{
|
|
RandomDataGenerator{kNumRows, kNumCols, 0.0f}.GenerateDMatrix()};
|
|
std::vector<bst_float> weight(kNumGroups);
|
|
std::vector<bst_int> group(kNumGroups);
|
|
group[0] = 2;
|
|
group[1] = 3;
|
|
group[2] = 7;
|
|
group[3] = 5;
|
|
std::vector<bst_float> labels (kNumRows);
|
|
for (size_t i = 0; i < kNumRows; ++i) {
|
|
labels[i] = i % 2;
|
|
}
|
|
|
|
p_mat->Info().SetInfo(
|
|
"weight", static_cast<void*>(weight.data()), DataType::kFloat32, kNumGroups);
|
|
p_mat->Info().SetInfo(
|
|
"group", group.data(), DataType::kUInt32, kNumGroups);
|
|
p_mat->Info().SetInfo("label", labels.data(), DataType::kFloat32, kNumRows);
|
|
|
|
std::vector<std::shared_ptr<xgboost::DMatrix>> mat = {p_mat};
|
|
auto learner = std::unique_ptr<Learner>(Learner::Create(mat));
|
|
learner->SetParams({Arg{"objective", "rank:pairwise"}});
|
|
EXPECT_NO_THROW(learner->UpdateOneIter(0, p_mat));
|
|
|
|
group.resize(kNumGroups+1);
|
|
group[3] = 4;
|
|
group[4] = 1;
|
|
p_mat->Info().SetInfo("group", group.data(), DataType::kUInt32, kNumGroups+1);
|
|
EXPECT_ANY_THROW(learner->UpdateOneIter(0, p_mat));
|
|
}
|
|
|
|
TEST(Learner, SLOW_CheckMultiBatch) { // NOLINT
|
|
// Create sufficiently large data to make two row pages
|
|
dmlc::TemporaryDirectory tempdir;
|
|
const std::string tmp_file = tempdir.path + "/big.libsvm";
|
|
CreateBigTestData(tmp_file, 50000);
|
|
std::shared_ptr<DMatrix> dmat(xgboost::DMatrix::Load(
|
|
tmp_file + "#" + tmp_file + ".cache", true, false, "auto"));
|
|
EXPECT_FALSE(dmat->SingleColBlock());
|
|
size_t num_row = dmat->Info().num_row_;
|
|
std::vector<bst_float> labels(num_row);
|
|
for (size_t i = 0; i < num_row; ++i) {
|
|
labels[i] = i % 2;
|
|
}
|
|
dmat->Info().SetInfo("label", labels.data(), DataType::kFloat32, num_row);
|
|
std::vector<std::shared_ptr<DMatrix>> mat{dmat};
|
|
auto learner = std::unique_ptr<Learner>(Learner::Create(mat));
|
|
learner->SetParams(Args{{"objective", "binary:logistic"}});
|
|
learner->UpdateOneIter(0, dmat);
|
|
}
|
|
|
|
TEST(Learner, Configuration) {
|
|
std::string const emetric = "eval_metric";
|
|
{
|
|
std::unique_ptr<Learner> learner { Learner::Create({nullptr}) };
|
|
learner->SetParam(emetric, "auc");
|
|
learner->SetParam(emetric, "rmsle");
|
|
learner->SetParam("foo", "bar");
|
|
|
|
// eval_metric is not part of configuration
|
|
auto attr_names = learner->GetConfigurationArguments();
|
|
ASSERT_EQ(attr_names.size(), 1ul);
|
|
ASSERT_EQ(attr_names.find(emetric), attr_names.cend());
|
|
ASSERT_EQ(attr_names.at("foo"), "bar");
|
|
}
|
|
|
|
{
|
|
std::unique_ptr<Learner> learner { Learner::Create({nullptr}) };
|
|
learner->SetParams({{"foo", "bar"}, {emetric, "auc"}, {emetric, "entropy"}, {emetric, "KL"}});
|
|
auto attr_names = learner->GetConfigurationArguments();
|
|
ASSERT_EQ(attr_names.size(), 1ul);
|
|
ASSERT_EQ(attr_names.at("foo"), "bar");
|
|
}
|
|
}
|
|
|
|
TEST(Learner, JsonModelIO) {
|
|
// Test of comparing JSON object directly.
|
|
size_t constexpr kRows = 8;
|
|
int32_t constexpr kIters = 4;
|
|
|
|
std::shared_ptr<DMatrix> p_dmat{RandomDataGenerator{kRows, 10, 0}.GenerateDMatrix()};
|
|
p_dmat->Info().labels.Reshape(kRows);
|
|
CHECK_NE(p_dmat->Info().num_col_, 0);
|
|
|
|
{
|
|
std::unique_ptr<Learner> learner { Learner::Create({p_dmat}) };
|
|
learner->Configure();
|
|
Json out { Object() };
|
|
learner->SaveModel(&out);
|
|
|
|
dmlc::TemporaryDirectory tmpdir;
|
|
|
|
std::ofstream fout (tmpdir.path + "/model.json");
|
|
fout << out;
|
|
fout.close();
|
|
|
|
auto loaded_str = common::LoadSequentialFile(tmpdir.path + "/model.json");
|
|
Json loaded = Json::Load(StringView{loaded_str.c_str(), loaded_str.size()});
|
|
|
|
learner->LoadModel(loaded);
|
|
learner->Configure();
|
|
|
|
Json new_in { Object() };
|
|
learner->SaveModel(&new_in);
|
|
ASSERT_EQ(new_in, out);
|
|
}
|
|
|
|
{
|
|
std::unique_ptr<Learner> learner { Learner::Create({p_dmat}) };
|
|
for (int32_t iter = 0; iter < kIters; ++iter) {
|
|
learner->UpdateOneIter(iter, p_dmat);
|
|
}
|
|
learner->SetAttr("best_score", "15.2");
|
|
|
|
Json out { Object() };
|
|
learner->SaveModel(&out);
|
|
|
|
learner->LoadModel(out);
|
|
Json new_in { Object() };
|
|
learner->Configure();
|
|
learner->SaveModel(&new_in);
|
|
|
|
ASSERT_TRUE(IsA<Object>(out["learner"]["attributes"]));
|
|
ASSERT_EQ(get<Object>(out["learner"]["attributes"]).size(), 1ul);
|
|
ASSERT_EQ(out, new_in);
|
|
}
|
|
}
|
|
|
|
// Crashes the test runner if there are race condiditions.
|
|
//
|
|
// Build with additional cmake flags to enable thread sanitizer
|
|
// which definitely catches problems. Note that OpenMP needs to be
|
|
// disabled, otherwise thread sanitizer will also report false
|
|
// positives.
|
|
//
|
|
// ```
|
|
// -DUSE_SANITIZER=ON -DENABLED_SANITIZERS=thread -DUSE_OPENMP=OFF
|
|
// ```
|
|
TEST(Learner, MultiThreadedPredict) {
|
|
size_t constexpr kRows = 1000;
|
|
size_t constexpr kCols = 100;
|
|
|
|
std::shared_ptr<DMatrix> p_dmat{RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix()};
|
|
p_dmat->Info().labels.Reshape(kRows);
|
|
CHECK_NE(p_dmat->Info().num_col_, 0);
|
|
|
|
std::shared_ptr<DMatrix> p_data{
|
|
RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix()};
|
|
CHECK_NE(p_data->Info().num_col_, 0);
|
|
|
|
std::shared_ptr<Learner> learner{Learner::Create({p_dmat})};
|
|
learner->Configure();
|
|
|
|
std::vector<std::thread> threads;
|
|
for (uint32_t thread_id = 0;
|
|
thread_id < 2 * std::thread::hardware_concurrency(); ++thread_id) {
|
|
threads.emplace_back([learner, p_data] {
|
|
size_t constexpr kIters = 10;
|
|
auto &entry = learner->GetThreadLocal().prediction_entry;
|
|
HostDeviceVector<float> predictions;
|
|
for (size_t iter = 0; iter < kIters; ++iter) {
|
|
learner->Predict(p_data, false, &entry.predictions, 0, 0);
|
|
|
|
learner->Predict(p_data, false, &predictions, 0, 0, false, true); // leaf
|
|
learner->Predict(p_data, false, &predictions, 0, 0, false, false, true); // contribs
|
|
}
|
|
});
|
|
}
|
|
for (auto &thread : threads) {
|
|
thread.join();
|
|
}
|
|
}
|
|
|
|
TEST(Learner, BinaryModelIO) {
|
|
size_t constexpr kRows = 8;
|
|
int32_t constexpr kIters = 4;
|
|
auto p_dmat = RandomDataGenerator{kRows, 10, 0}.GenerateDMatrix();
|
|
p_dmat->Info().labels.Reshape(kRows);
|
|
|
|
std::unique_ptr<Learner> learner{Learner::Create({p_dmat})};
|
|
learner->SetParam("eval_metric", "rmsle");
|
|
learner->Configure();
|
|
for (int32_t iter = 0; iter < kIters; ++iter) {
|
|
learner->UpdateOneIter(iter, p_dmat);
|
|
}
|
|
dmlc::TemporaryDirectory tempdir;
|
|
std::string const fname = tempdir.path + "binary_model_io.bin";
|
|
{
|
|
// Make sure the write is complete before loading.
|
|
std::unique_ptr<dmlc::Stream> fo(dmlc::Stream::Create(fname.c_str(), "w"));
|
|
learner->SaveModel(fo.get());
|
|
}
|
|
|
|
learner.reset(Learner::Create({p_dmat}));
|
|
std::unique_ptr<dmlc::Stream> fi(dmlc::Stream::Create(fname.c_str(), "r"));
|
|
learner->LoadModel(fi.get());
|
|
learner->Configure();
|
|
Json config { Object() };
|
|
learner->SaveConfig(&config);
|
|
std::string config_str;
|
|
Json::Dump(config, &config_str);
|
|
ASSERT_NE(config_str.find("rmsle"), std::string::npos);
|
|
ASSERT_EQ(config_str.find("WARNING"), std::string::npos);
|
|
}
|
|
|
|
#if defined(XGBOOST_USE_CUDA)
|
|
// Tests for automatic GPU configuration.
|
|
TEST(Learner, GPUConfiguration) {
|
|
using Arg = std::pair<std::string, std::string>;
|
|
size_t constexpr kRows = 10;
|
|
auto p_dmat = RandomDataGenerator(kRows, 10, 0).GenerateDMatrix();
|
|
std::vector<std::shared_ptr<DMatrix>> mat {p_dmat};
|
|
std::vector<bst_float> labels(kRows);
|
|
for (size_t i = 0; i < labels.size(); ++i) {
|
|
labels[i] = i;
|
|
}
|
|
p_dmat->Info().labels.Data()->HostVector() = labels;
|
|
{
|
|
std::unique_ptr<Learner> learner {Learner::Create(mat)};
|
|
learner->SetParams({Arg{"booster", "gblinear"},
|
|
Arg{"updater", "gpu_coord_descent"}});
|
|
learner->UpdateOneIter(0, p_dmat);
|
|
ASSERT_EQ(learner->GetGenericParameter().gpu_id, 0);
|
|
}
|
|
{
|
|
std::unique_ptr<Learner> learner {Learner::Create(mat)};
|
|
learner->SetParams({Arg{"tree_method", "gpu_hist"}});
|
|
learner->UpdateOneIter(0, p_dmat);
|
|
ASSERT_EQ(learner->GetGenericParameter().gpu_id, 0);
|
|
}
|
|
{
|
|
std::unique_ptr<Learner> learner {Learner::Create(mat)};
|
|
learner->SetParams({Arg{"tree_method", "gpu_hist"},
|
|
Arg{"gpu_id", "-1"}});
|
|
learner->UpdateOneIter(0, p_dmat);
|
|
ASSERT_EQ(learner->GetGenericParameter().gpu_id, 0);
|
|
}
|
|
{
|
|
// with CPU algorithm
|
|
std::unique_ptr<Learner> learner {Learner::Create(mat)};
|
|
learner->SetParams({Arg{"tree_method", "hist"}});
|
|
learner->UpdateOneIter(0, p_dmat);
|
|
ASSERT_EQ(learner->GetGenericParameter().gpu_id, -1);
|
|
}
|
|
{
|
|
// with CPU algorithm, but `gpu_id` takes priority
|
|
std::unique_ptr<Learner> learner {Learner::Create(mat)};
|
|
learner->SetParams({Arg{"tree_method", "hist"},
|
|
Arg{"gpu_id", "0"}});
|
|
learner->UpdateOneIter(0, p_dmat);
|
|
ASSERT_EQ(learner->GetGenericParameter().gpu_id, 0);
|
|
}
|
|
{
|
|
// With CPU algorithm but GPU Predictor, this is to simulate when
|
|
// XGBoost is only used for prediction, so tree method is not
|
|
// specified.
|
|
std::unique_ptr<Learner> learner {Learner::Create(mat)};
|
|
learner->SetParams({Arg{"tree_method", "hist"},
|
|
Arg{"predictor", "gpu_predictor"}});
|
|
learner->UpdateOneIter(0, p_dmat);
|
|
ASSERT_EQ(learner->GetGenericParameter().gpu_id, 0);
|
|
}
|
|
}
|
|
#endif // defined(XGBOOST_USE_CUDA)
|
|
|
|
TEST(Learner, Seed) {
|
|
auto m = RandomDataGenerator{10, 10, 0}.GenerateDMatrix();
|
|
std::unique_ptr<Learner> learner {
|
|
Learner::Create({m})
|
|
};
|
|
auto seed = std::numeric_limits<int64_t>::max();
|
|
learner->SetParam("seed", std::to_string(seed));
|
|
learner->Configure();
|
|
Json config { Object() };
|
|
learner->SaveConfig(&config);
|
|
ASSERT_EQ(std::to_string(seed),
|
|
get<String>(config["learner"]["generic_param"]["seed"]));
|
|
|
|
seed = std::numeric_limits<int64_t>::min();
|
|
learner->SetParam("seed", std::to_string(seed));
|
|
learner->Configure();
|
|
learner->SaveConfig(&config);
|
|
ASSERT_EQ(std::to_string(seed),
|
|
get<String>(config["learner"]["generic_param"]["seed"]));
|
|
}
|
|
|
|
TEST(Learner, ConstantSeed) {
|
|
auto m = RandomDataGenerator{10, 10, 0}.GenerateDMatrix(true);
|
|
std::unique_ptr<Learner> learner{Learner::Create({m})};
|
|
learner->Configure(); // seed the global random
|
|
|
|
std::uniform_real_distribution<float> dist;
|
|
auto& rng = common::GlobalRandom();
|
|
float v_0 = dist(rng);
|
|
|
|
learner->SetParam("", "");
|
|
learner->Configure(); // check configure doesn't change the seed.
|
|
float v_1 = dist(rng);
|
|
CHECK_NE(v_0, v_1);
|
|
|
|
{
|
|
rng.seed(GenericParameter::kDefaultSeed);
|
|
std::uniform_real_distribution<float> dist;
|
|
float v_2 = dist(rng);
|
|
CHECK_EQ(v_0, v_2);
|
|
}
|
|
}
|
|
|
|
TEST(Learner, FeatureInfo) {
|
|
size_t constexpr kCols = 10;
|
|
auto m = RandomDataGenerator{10, kCols, 0}.GenerateDMatrix(true);
|
|
std::vector<std::string> names(kCols);
|
|
for (size_t i = 0; i < kCols; ++i) {
|
|
names[i] = ("f" + std::to_string(i));
|
|
}
|
|
|
|
std::vector<std::string> types(kCols);
|
|
for (size_t i = 0; i < kCols; ++i) {
|
|
types[i] = "q";
|
|
}
|
|
types[8] = "f";
|
|
types[0] = "int";
|
|
types[3] = "i";
|
|
types[7] = "i";
|
|
|
|
std::vector<char const*> c_names(kCols);
|
|
for (size_t i = 0; i < names.size(); ++i) {
|
|
c_names[i] = names[i].c_str();
|
|
}
|
|
std::vector<char const*> c_types(kCols);
|
|
for (size_t i = 0; i < types.size(); ++i) {
|
|
c_types[i] = names[i].c_str();
|
|
}
|
|
|
|
std::vector<std::string> out_names;
|
|
std::vector<std::string> out_types;
|
|
|
|
Json model{Object()};
|
|
{
|
|
std::unique_ptr<Learner> learner{Learner::Create({m})};
|
|
learner->Configure();
|
|
learner->SetFeatureNames(names);
|
|
learner->GetFeatureNames(&out_names);
|
|
|
|
learner->SetFeatureTypes(types);
|
|
learner->GetFeatureTypes(&out_types);
|
|
|
|
ASSERT_TRUE(std::equal(out_names.begin(), out_names.end(), names.begin()));
|
|
ASSERT_TRUE(std::equal(out_types.begin(), out_types.end(), types.begin()));
|
|
|
|
learner->SaveModel(&model);
|
|
}
|
|
|
|
{
|
|
std::unique_ptr<Learner> learner{Learner::Create({m})};
|
|
learner->LoadModel(model);
|
|
|
|
learner->GetFeatureNames(&out_names);
|
|
learner->GetFeatureTypes(&out_types);
|
|
ASSERT_TRUE(std::equal(out_names.begin(), out_names.end(), names.begin()));
|
|
ASSERT_TRUE(std::equal(out_types.begin(), out_types.end(), types.begin()));
|
|
}
|
|
}
|
|
} // namespace xgboost
|