xgboost/tests/python-gpu/test_gpu_with_sklearn.py
Jiaming Yuan 7b65698187
Enforce correct data shape. (#5191)
* Fix syncing DMatrix columns.
* notes for tree method.
* Enable feature validation for all interfaces except for jvm.
* Better tests for boosting from predictions.
* Disable validation on JVM.
2020-01-13 15:48:17 +08:00

41 lines
1.3 KiB
Python

import xgboost as xgb
import pytest
import sys
import numpy as np
import unittest
sys.path.append("tests/python")
import testing as tm # noqa
import test_with_sklearn as twskl # noqa
pytestmark = pytest.mark.skipif(**tm.no_sklearn())
rng = np.random.RandomState(1994)
def test_gpu_binary_classification():
from sklearn.datasets import load_digits
from sklearn.model_selection import KFold
digits = load_digits(2)
y = digits['target']
X = digits['data']
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
for cls in (xgb.XGBClassifier, xgb.XGBRFClassifier):
for train_index, test_index in kf.split(X, y):
xgb_model = cls(
random_state=42, tree_method='gpu_hist',
n_estimators=4, gpu_id='0').fit(X[train_index], y[train_index])
preds = xgb_model.predict(X[test_index])
labels = y[test_index]
err = sum(1 for i in range(len(preds))
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
assert err < 0.1
class TestGPUBoostFromPrediction(unittest.TestCase):
cpu_test = twskl.TestBoostFromPrediction()
def test_boost_from_prediction_gpu_hist(self):
self.cpu_test.run_boost_from_prediction('gpu_hist')