* Upgrade gtest for clang-tidy. * Use CMake to install GTest instead of mv. * Don't enforce clang-tidy to return 0 due to errors in thrust. * Add a small test for tidy itself. * Reformat.
234 lines
6.4 KiB
C++
234 lines
6.4 KiB
C++
/*!
|
|
* Copyright 2017 by Contributors
|
|
* \file hist_util.h
|
|
* \brief Utility for fast histogram aggregation
|
|
* \author Philip Cho, Tianqi Chen
|
|
*/
|
|
#ifndef XGBOOST_COMMON_HIST_UTIL_H_
|
|
#define XGBOOST_COMMON_HIST_UTIL_H_
|
|
|
|
#include <xgboost/data.h>
|
|
#include <limits>
|
|
#include <vector>
|
|
#include "row_set.h"
|
|
#include "../tree/param.h"
|
|
#include "./quantile.h"
|
|
#include "./timer.h"
|
|
#include "../include/rabit/rabit.h"
|
|
|
|
namespace xgboost {
|
|
namespace common {
|
|
|
|
/*! \brief Cut configuration for all the features. */
|
|
struct HistCutMatrix {
|
|
/*! \brief Unit pointer to rows by element position */
|
|
std::vector<uint32_t> row_ptr;
|
|
/*! \brief minimum value of each feature */
|
|
std::vector<bst_float> min_val;
|
|
/*! \brief the cut field */
|
|
std::vector<bst_float> cut;
|
|
uint32_t GetBinIdx(const Entry &e);
|
|
|
|
using WXQSketch = common::WXQuantileSketch<bst_float, bst_float>;
|
|
|
|
// create histogram cut matrix given statistics from data
|
|
// using approximate quantile sketch approach
|
|
void Init(DMatrix* p_fmat, uint32_t max_num_bins);
|
|
|
|
void Init(std::vector<WXQSketch>* sketchs, uint32_t max_num_bins);
|
|
|
|
HistCutMatrix();
|
|
size_t NumBins() const { return row_ptr.back(); }
|
|
|
|
protected:
|
|
virtual size_t SearchGroupIndFromBaseRow(
|
|
std::vector<bst_uint> const& group_ptr, size_t const base_rowid) const;
|
|
|
|
Monitor monitor_;
|
|
};
|
|
|
|
/*! \brief Builds the cut matrix on the GPU */
|
|
void DeviceSketch
|
|
(const SparsePage& batch, const MetaInfo& info,
|
|
const tree::TrainParam& param, HistCutMatrix* hmat, int gpu_batch_nrows);
|
|
|
|
/*!
|
|
* \brief A single row in global histogram index.
|
|
* Directly represent the global index in the histogram entry.
|
|
*/
|
|
using GHistIndexRow = Span<uint32_t const>;
|
|
|
|
/*!
|
|
* \brief preprocessed global index matrix, in CSR format
|
|
* Transform floating values to integer index in histogram
|
|
* This is a global histogram index.
|
|
*/
|
|
struct GHistIndexMatrix {
|
|
/*! \brief row pointer to rows by element position */
|
|
std::vector<size_t> row_ptr;
|
|
/*! \brief The index data */
|
|
std::vector<uint32_t> index;
|
|
/*! \brief hit count of each index */
|
|
std::vector<size_t> hit_count;
|
|
/*! \brief The corresponding cuts */
|
|
HistCutMatrix cut;
|
|
// Create a global histogram matrix, given cut
|
|
void Init(DMatrix* p_fmat, int max_num_bins);
|
|
// get i-th row
|
|
inline GHistIndexRow operator[](size_t i) const {
|
|
return {&index[0] + row_ptr[i],
|
|
static_cast<GHistIndexRow::index_type>(
|
|
row_ptr[i + 1] - row_ptr[i])};
|
|
}
|
|
inline void GetFeatureCounts(size_t* counts) const {
|
|
auto nfeature = cut.row_ptr.size() - 1;
|
|
for (unsigned fid = 0; fid < nfeature; ++fid) {
|
|
auto ibegin = cut.row_ptr[fid];
|
|
auto iend = cut.row_ptr[fid + 1];
|
|
for (auto i = ibegin; i < iend; ++i) {
|
|
counts[fid] += hit_count[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::vector<size_t> hit_count_tloc_;
|
|
};
|
|
|
|
struct GHistIndexBlock {
|
|
const size_t* row_ptr;
|
|
const uint32_t* index;
|
|
|
|
inline GHistIndexBlock(const size_t* row_ptr, const uint32_t* index)
|
|
: row_ptr(row_ptr), index(index) {}
|
|
};
|
|
|
|
class ColumnMatrix;
|
|
|
|
class GHistIndexBlockMatrix {
|
|
public:
|
|
void Init(const GHistIndexMatrix& gmat,
|
|
const ColumnMatrix& colmat,
|
|
const tree::TrainParam& param);
|
|
|
|
inline GHistIndexBlock operator[](size_t i) const {
|
|
return {blocks_[i].row_ptr_begin, blocks_[i].index_begin};
|
|
}
|
|
|
|
inline size_t GetNumBlock() const {
|
|
return blocks_.size();
|
|
}
|
|
|
|
private:
|
|
std::vector<size_t> row_ptr_;
|
|
std::vector<uint32_t> index_;
|
|
const HistCutMatrix* cut_;
|
|
struct Block {
|
|
const size_t* row_ptr_begin;
|
|
const size_t* row_ptr_end;
|
|
const uint32_t* index_begin;
|
|
const uint32_t* index_end;
|
|
};
|
|
std::vector<Block> blocks_;
|
|
};
|
|
|
|
/*!
|
|
* \brief histogram of graident statistics for a single node.
|
|
* Consists of multiple GradStats, each entry showing total graident statistics
|
|
* for that particular bin
|
|
* Uses global bin id so as to represent all features simultaneously
|
|
*/
|
|
using GHistRow = Span<tree::GradStats>;
|
|
|
|
/*!
|
|
* \brief histogram of gradient statistics for multiple nodes
|
|
*/
|
|
class HistCollection {
|
|
public:
|
|
// access histogram for i-th node
|
|
GHistRow operator[](bst_uint nid) const {
|
|
constexpr uint32_t kMax = std::numeric_limits<uint32_t>::max();
|
|
CHECK_NE(row_ptr_[nid], kMax);
|
|
tree::GradStats* ptr =
|
|
const_cast<tree::GradStats*>(dmlc::BeginPtr(data_) + row_ptr_[nid]);
|
|
return {ptr, nbins_};
|
|
}
|
|
|
|
// have we computed a histogram for i-th node?
|
|
bool RowExists(bst_uint nid) const {
|
|
const uint32_t k_max = std::numeric_limits<uint32_t>::max();
|
|
return (nid < row_ptr_.size() && row_ptr_[nid] != k_max);
|
|
}
|
|
|
|
// initialize histogram collection
|
|
void Init(uint32_t nbins) {
|
|
nbins_ = nbins;
|
|
row_ptr_.clear();
|
|
data_.clear();
|
|
}
|
|
|
|
// create an empty histogram for i-th node
|
|
void AddHistRow(bst_uint nid) {
|
|
constexpr uint32_t kMax = std::numeric_limits<uint32_t>::max();
|
|
if (nid >= row_ptr_.size()) {
|
|
row_ptr_.resize(nid + 1, kMax);
|
|
}
|
|
CHECK_EQ(row_ptr_[nid], kMax);
|
|
|
|
row_ptr_[nid] = data_.size();
|
|
data_.resize(data_.size() + nbins_);
|
|
}
|
|
|
|
private:
|
|
/*! \brief number of all bins over all features */
|
|
uint32_t nbins_;
|
|
|
|
std::vector<tree::GradStats> data_;
|
|
|
|
/*! \brief row_ptr_[nid] locates bin for historgram of node nid */
|
|
std::vector<size_t> row_ptr_;
|
|
};
|
|
|
|
/*!
|
|
* \brief builder for histograms of gradient statistics
|
|
*/
|
|
class GHistBuilder {
|
|
public:
|
|
// initialize builder
|
|
inline void Init(size_t nthread, uint32_t nbins) {
|
|
nthread_ = nthread;
|
|
nbins_ = nbins;
|
|
thread_init_.resize(nthread_);
|
|
}
|
|
|
|
// construct a histogram via histogram aggregation
|
|
void BuildHist(const std::vector<GradientPair>& gpair,
|
|
const RowSetCollection::Elem row_indices,
|
|
const GHistIndexMatrix& gmat,
|
|
GHistRow hist);
|
|
// same, with feature grouping
|
|
void BuildBlockHist(const std::vector<GradientPair>& gpair,
|
|
const RowSetCollection::Elem row_indices,
|
|
const GHistIndexBlockMatrix& gmatb,
|
|
GHistRow hist);
|
|
// construct a histogram via subtraction trick
|
|
void SubtractionTrick(GHistRow self, GHistRow sibling, GHistRow parent);
|
|
|
|
uint32_t GetNumBins() {
|
|
return nbins_;
|
|
}
|
|
|
|
private:
|
|
/*! \brief number of threads for parallel computation */
|
|
size_t nthread_;
|
|
/*! \brief number of all bins over all features */
|
|
uint32_t nbins_;
|
|
std::vector<size_t> thread_init_;
|
|
std::vector<tree::GradStats> data_;
|
|
};
|
|
|
|
|
|
} // namespace common
|
|
} // namespace xgboost
|
|
#endif // XGBOOST_COMMON_HIST_UTIL_H_
|