xgboost/src/data/simple_dmatrix.cc
2022-01-24 02:44:07 +08:00

249 lines
9.2 KiB
C++

/*!
* Copyright 2014~2022 by XGBoost Contributors
* \file simple_dmatrix.cc
* \brief the input data structure for gradient boosting
* \author Tianqi Chen
*/
#include <vector>
#include <limits>
#include <type_traits>
#include <algorithm>
#include "xgboost/data.h"
#include "xgboost/c_api.h"
#include "simple_dmatrix.h"
#include "./simple_batch_iterator.h"
#include "../common/random.h"
#include "../common/threading_utils.h"
#include "adapter.h"
#include "gradient_index.h"
namespace xgboost {
namespace data {
MetaInfo& SimpleDMatrix::Info() { return info_; }
const MetaInfo& SimpleDMatrix::Info() const { return info_; }
DMatrix* SimpleDMatrix::Slice(common::Span<int32_t const> ridxs) {
auto out = new SimpleDMatrix;
SparsePage& out_page = *out->sparse_page_;
for (auto const &page : this->GetBatches<SparsePage>()) {
auto batch = page.GetView();
auto& h_data = out_page.data.HostVector();
auto& h_offset = out_page.offset.HostVector();
size_t rptr{0};
for (auto ridx : ridxs) {
auto inst = batch[ridx];
rptr += inst.size();
std::copy(inst.begin(), inst.end(), std::back_inserter(h_data));
h_offset.emplace_back(rptr);
}
out->Info() = this->Info().Slice(ridxs);
out->Info().num_nonzero_ = h_offset.back();
}
return out;
}
BatchSet<SparsePage> SimpleDMatrix::GetRowBatches() {
// since csr is the default data structure so `source_` is always available.
auto begin_iter = BatchIterator<SparsePage>(
new SimpleBatchIteratorImpl<SparsePage>(sparse_page_));
return BatchSet<SparsePage>(begin_iter);
}
BatchSet<CSCPage> SimpleDMatrix::GetColumnBatches() {
// column page doesn't exist, generate it
if (!column_page_) {
column_page_.reset(new CSCPage(sparse_page_->GetTranspose(info_.num_col_, ctx_.Threads())));
}
auto begin_iter =
BatchIterator<CSCPage>(new SimpleBatchIteratorImpl<CSCPage>(column_page_));
return BatchSet<CSCPage>(begin_iter);
}
BatchSet<SortedCSCPage> SimpleDMatrix::GetSortedColumnBatches() {
// Sorted column page doesn't exist, generate it
if (!sorted_column_page_) {
sorted_column_page_.reset(
new SortedCSCPage(sparse_page_->GetTranspose(info_.num_col_, ctx_.Threads())));
sorted_column_page_->SortRows();
}
auto begin_iter = BatchIterator<SortedCSCPage>(
new SimpleBatchIteratorImpl<SortedCSCPage>(sorted_column_page_));
return BatchSet<SortedCSCPage>(begin_iter);
}
BatchSet<EllpackPage> SimpleDMatrix::GetEllpackBatches(const BatchParam& param) {
// ELLPACK page doesn't exist, generate it
if (!(batch_param_ != BatchParam{})) {
CHECK(param != BatchParam{}) << "Batch parameter is not initialized.";
}
if (!ellpack_page_ || (batch_param_ != param && param != BatchParam{})) {
CHECK_GE(param.gpu_id, 0);
CHECK_GE(param.max_bin, 2);
ellpack_page_.reset(new EllpackPage(this, param));
batch_param_ = param;
}
auto begin_iter =
BatchIterator<EllpackPage>(new SimpleBatchIteratorImpl<EllpackPage>(ellpack_page_));
return BatchSet<EllpackPage>(begin_iter);
}
BatchSet<GHistIndexMatrix> SimpleDMatrix::GetGradientIndex(const BatchParam& param) {
if (!(batch_param_ != BatchParam{})) {
CHECK(param != BatchParam{}) << "Batch parameter is not initialized.";
}
if (!gradient_index_ || (batch_param_ != param && param != BatchParam{}) || param.regen) {
CHECK_GE(param.max_bin, 2);
CHECK_EQ(param.gpu_id, -1);
// Used only by approx.
auto sorted_sketch = param.regen;
gradient_index_.reset(
new GHistIndexMatrix(this, param.max_bin, sorted_sketch, this->ctx_.Threads(), param.hess));
batch_param_ = param;
CHECK_EQ(batch_param_.hess.data(), param.hess.data());
}
auto begin_iter = BatchIterator<GHistIndexMatrix>(
new SimpleBatchIteratorImpl<GHistIndexMatrix>(gradient_index_));
return BatchSet<GHistIndexMatrix>(begin_iter);
}
template <typename AdapterT>
SimpleDMatrix::SimpleDMatrix(AdapterT* adapter, float missing, int nthread) {
this->ctx_.nthread = nthread;
std::vector<uint64_t> qids;
uint64_t default_max = std::numeric_limits<uint64_t>::max();
uint64_t last_group_id = default_max;
bst_uint group_size = 0;
auto& offset_vec = sparse_page_->offset.HostVector();
auto& data_vec = sparse_page_->data.HostVector();
uint64_t inferred_num_columns = 0;
uint64_t total_batch_size = 0;
// batch_size is either number of rows or cols, depending on data layout
adapter->BeforeFirst();
// Iterate over batches of input data
while (adapter->Next()) {
auto& batch = adapter->Value();
auto batch_max_columns = sparse_page_->Push(batch, missing, ctx_.Threads());
inferred_num_columns = std::max(batch_max_columns, inferred_num_columns);
total_batch_size += batch.Size();
// Append meta information if available
if (batch.Labels() != nullptr) {
info_.labels.ModifyInplace([&](auto* data, common::Span<size_t, 2> shape) {
shape[1] = 1;
auto& labels = data->HostVector();
labels.insert(labels.end(), batch.Labels(), batch.Labels() + batch.Size());
shape[0] += batch.Size();
});
}
if (batch.Weights() != nullptr) {
auto& weights = info_.weights_.HostVector();
weights.insert(weights.end(), batch.Weights(), batch.Weights() + batch.Size());
}
if (batch.BaseMargin() != nullptr) {
info_.base_margin_ = decltype(info_.base_margin_){batch.BaseMargin(),
batch.BaseMargin() + batch.Size(),
{batch.Size()},
GenericParameter::kCpuId};
}
if (batch.Qid() != nullptr) {
qids.insert(qids.end(), batch.Qid(), batch.Qid() + batch.Size());
// get group
for (size_t i = 0; i < batch.Size(); ++i) {
const uint64_t cur_group_id = batch.Qid()[i];
if (last_group_id == default_max || last_group_id != cur_group_id) {
info_.group_ptr_.push_back(group_size);
}
last_group_id = cur_group_id;
++group_size;
}
}
}
if (last_group_id != default_max) {
if (group_size > info_.group_ptr_.back()) {
info_.group_ptr_.push_back(group_size);
}
}
// Deal with empty rows/columns if necessary
if (adapter->NumColumns() == kAdapterUnknownSize) {
info_.num_col_ = inferred_num_columns;
} else {
info_.num_col_ = adapter->NumColumns();
}
// Synchronise worker columns
rabit::Allreduce<rabit::op::Max>(&info_.num_col_, 1);
if (adapter->NumRows() == kAdapterUnknownSize) {
using IteratorAdapterT
= IteratorAdapter<DataIterHandle, XGBCallbackDataIterNext, XGBoostBatchCSR>;
// If AdapterT is either IteratorAdapter or FileAdapter type, use the total batch size to
// determine the correct number of rows, as offset_vec may be too short
if (std::is_same<AdapterT, IteratorAdapterT>::value
|| std::is_same<AdapterT, FileAdapter>::value) {
info_.num_row_ = total_batch_size;
// Ensure offset_vec.size() - 1 == [number of rows]
while (offset_vec.size() - 1 < total_batch_size) {
offset_vec.emplace_back(offset_vec.back());
}
} else {
CHECK((std::is_same<AdapterT, CSCAdapter>::value)) << "Expecting CSCAdapter";
info_.num_row_ = offset_vec.size() - 1;
}
} else {
if (offset_vec.empty()) {
offset_vec.emplace_back(0);
}
while (offset_vec.size() - 1 < adapter->NumRows()) {
offset_vec.emplace_back(offset_vec.back());
}
info_.num_row_ = adapter->NumRows();
}
info_.num_nonzero_ = data_vec.size();
}
SimpleDMatrix::SimpleDMatrix(dmlc::Stream* in_stream) {
int tmagic;
CHECK(in_stream->Read(&tmagic)) << "invalid input file format";
CHECK_EQ(tmagic, kMagic) << "invalid format, magic number mismatch";
info_.LoadBinary(in_stream);
in_stream->Read(&sparse_page_->offset.HostVector());
in_stream->Read(&sparse_page_->data.HostVector());
}
void SimpleDMatrix::SaveToLocalFile(const std::string& fname) {
std::unique_ptr<dmlc::Stream> fo(dmlc::Stream::Create(fname.c_str(), "w"));
int tmagic = kMagic;
fo->Write(tmagic);
info_.SaveBinary(fo.get());
fo->Write(sparse_page_->offset.HostVector());
fo->Write(sparse_page_->data.HostVector());
}
template SimpleDMatrix::SimpleDMatrix(DenseAdapter* adapter, float missing,
int nthread);
template SimpleDMatrix::SimpleDMatrix(ArrayAdapter* adapter, float missing,
int nthread);
template SimpleDMatrix::SimpleDMatrix(CSRAdapter* adapter, float missing,
int nthread);
template SimpleDMatrix::SimpleDMatrix(CSRArrayAdapter* adapter, float missing,
int nthread);
template SimpleDMatrix::SimpleDMatrix(CSCAdapter* adapter, float missing,
int nthread);
template SimpleDMatrix::SimpleDMatrix(DataTableAdapter* adapter, float missing,
int nthread);
template SimpleDMatrix::SimpleDMatrix(FileAdapter* adapter, float missing,
int nthread);
template SimpleDMatrix::SimpleDMatrix(
IteratorAdapter<DataIterHandle, XGBCallbackDataIterNext, XGBoostBatchCSR>
*adapter,
float missing, int nthread);
} // namespace data
} // namespace xgboost