671 lines
22 KiB
R
671 lines
22 KiB
R
context("basic functions")
|
|
|
|
data(agaricus.train, package = "xgboost")
|
|
data(agaricus.test, package = "xgboost")
|
|
train <- agaricus.train
|
|
test <- agaricus.test
|
|
set.seed(1994)
|
|
|
|
# disable some tests for Win32
|
|
windows_flag <- .Platform$OS.type == "windows" &&
|
|
.Machine$sizeof.pointer != 8
|
|
solaris_flag <- (Sys.info()["sysname"] == "SunOS")
|
|
n_threads <- 1
|
|
|
|
|
|
test_that("train and predict binary classification", {
|
|
nrounds <- 2
|
|
expect_output(
|
|
bst <- xgboost(
|
|
data = train$data, label = train$label, max_depth = 2,
|
|
eta = 1, nthread = n_threads, nrounds = nrounds,
|
|
objective = "binary:logistic", eval_metric = "error"
|
|
),
|
|
"train-error"
|
|
)
|
|
expect_equal(class(bst), "xgb.Booster")
|
|
expect_equal(bst$niter, nrounds)
|
|
expect_false(is.null(bst$evaluation_log))
|
|
expect_equal(nrow(bst$evaluation_log), nrounds)
|
|
expect_lt(bst$evaluation_log[, min(train_error)], 0.03)
|
|
|
|
pred <- predict(bst, test$data)
|
|
expect_length(pred, 1611)
|
|
|
|
pred1 <- predict(bst, train$data, ntreelimit = 1)
|
|
expect_length(pred1, 6513)
|
|
err_pred1 <- sum((pred1 > 0.5) != train$label) / length(train$label)
|
|
err_log <- bst$evaluation_log[1, train_error]
|
|
expect_lt(abs(err_pred1 - err_log), 10e-6)
|
|
|
|
pred2 <- predict(bst, train$data, iterationrange = c(1, 2))
|
|
expect_length(pred1, 6513)
|
|
expect_equal(pred1, pred2)
|
|
})
|
|
|
|
test_that("parameter validation works", {
|
|
p <- list(foo = "bar")
|
|
nrounds <- 1
|
|
set.seed(1994)
|
|
|
|
d <- cbind(
|
|
x1 = rnorm(10),
|
|
x2 = rnorm(10),
|
|
x3 = rnorm(10)
|
|
)
|
|
y <- d[, "x1"] + d[, "x2"]^2 +
|
|
ifelse(d[, "x3"] > .5, d[, "x3"]^2, 2^d[, "x3"]) +
|
|
rnorm(10)
|
|
dtrain <- xgb.DMatrix(data = d, label = y, nthread = n_threads)
|
|
|
|
correct <- function() {
|
|
params <- list(
|
|
max_depth = 2,
|
|
booster = "dart",
|
|
rate_drop = 0.5,
|
|
one_drop = TRUE,
|
|
nthread = n_threads,
|
|
objective = "reg:squarederror"
|
|
)
|
|
xgb.train(params = params, data = dtrain, nrounds = nrounds)
|
|
}
|
|
expect_silent(correct())
|
|
incorrect <- function() {
|
|
params <- list(
|
|
max_depth = 2,
|
|
booster = "dart",
|
|
rate_drop = 0.5,
|
|
one_drop = TRUE,
|
|
objective = "reg:squarederror",
|
|
nthread = n_threads,
|
|
foo = "bar",
|
|
bar = "foo"
|
|
)
|
|
output <- capture.output(
|
|
xgb.train(params = params, data = dtrain, nrounds = nrounds)
|
|
)
|
|
print(output)
|
|
}
|
|
expect_output(incorrect(), '\\\\"bar\\\\", \\\\"foo\\\\"')
|
|
})
|
|
|
|
|
|
test_that("dart prediction works", {
|
|
nrounds <- 32
|
|
set.seed(1994)
|
|
|
|
d <- cbind(
|
|
x1 = rnorm(100),
|
|
x2 = rnorm(100),
|
|
x3 = rnorm(100)
|
|
)
|
|
y <- d[, "x1"] + d[, "x2"]^2 +
|
|
ifelse(d[, "x3"] > .5, d[, "x3"]^2, 2^d[, "x3"]) +
|
|
rnorm(100)
|
|
|
|
set.seed(1994)
|
|
booster_by_xgboost <- xgboost(
|
|
data = d,
|
|
label = y,
|
|
max_depth = 2,
|
|
booster = "dart",
|
|
rate_drop = 0.5,
|
|
one_drop = TRUE,
|
|
eta = 1,
|
|
nthread = n_threads,
|
|
nrounds = nrounds,
|
|
objective = "reg:squarederror"
|
|
)
|
|
pred_by_xgboost_0 <- predict(booster_by_xgboost, newdata = d, ntreelimit = 0)
|
|
pred_by_xgboost_1 <- predict(booster_by_xgboost, newdata = d, ntreelimit = nrounds)
|
|
expect_true(all(matrix(pred_by_xgboost_0, byrow = TRUE) == matrix(pred_by_xgboost_1, byrow = TRUE)))
|
|
|
|
pred_by_xgboost_2 <- predict(booster_by_xgboost, newdata = d, training = TRUE)
|
|
expect_false(all(matrix(pred_by_xgboost_0, byrow = TRUE) == matrix(pred_by_xgboost_2, byrow = TRUE)))
|
|
|
|
set.seed(1994)
|
|
dtrain <- xgb.DMatrix(data = d, label = y, nthread = n_threads)
|
|
booster_by_train <- xgb.train(
|
|
params = list(
|
|
booster = "dart",
|
|
max_depth = 2,
|
|
eta = 1,
|
|
rate_drop = 0.5,
|
|
one_drop = TRUE,
|
|
nthread = n_threads,
|
|
objective = "reg:squarederror"
|
|
),
|
|
data = dtrain,
|
|
nrounds = nrounds
|
|
)
|
|
pred_by_train_0 <- predict(booster_by_train, newdata = dtrain, ntreelimit = 0)
|
|
pred_by_train_1 <- predict(booster_by_train, newdata = dtrain, ntreelimit = nrounds)
|
|
pred_by_train_2 <- predict(booster_by_train, newdata = dtrain, training = TRUE)
|
|
|
|
expect_true(all(matrix(pred_by_train_0, byrow = TRUE) == matrix(pred_by_xgboost_0, byrow = TRUE)))
|
|
expect_true(all(matrix(pred_by_train_1, byrow = TRUE) == matrix(pred_by_xgboost_1, byrow = TRUE)))
|
|
expect_true(all(matrix(pred_by_train_2, byrow = TRUE) == matrix(pred_by_xgboost_2, byrow = TRUE)))
|
|
})
|
|
|
|
test_that("train and predict softprob", {
|
|
lb <- as.numeric(iris$Species) - 1
|
|
set.seed(11)
|
|
expect_output(
|
|
bst <- xgboost(
|
|
data = as.matrix(iris[, -5]), label = lb,
|
|
max_depth = 3, eta = 0.5, nthread = n_threads, nrounds = 5,
|
|
objective = "multi:softprob", num_class = 3, eval_metric = "merror"
|
|
),
|
|
"train-merror"
|
|
)
|
|
expect_false(is.null(bst$evaluation_log))
|
|
expect_lt(bst$evaluation_log[, min(train_merror)], 0.025)
|
|
expect_equal(bst$niter * 3, xgb.ntree(bst))
|
|
pred <- predict(bst, as.matrix(iris[, -5]))
|
|
expect_length(pred, nrow(iris) * 3)
|
|
# row sums add up to total probability of 1:
|
|
expect_equal(rowSums(matrix(pred, ncol = 3, byrow = TRUE)), rep(1, nrow(iris)), tolerance = 1e-7)
|
|
# manually calculate error at the last iteration:
|
|
mpred <- predict(bst, as.matrix(iris[, -5]), reshape = TRUE)
|
|
expect_equal(as.numeric(t(mpred)), pred)
|
|
pred_labels <- max.col(mpred) - 1
|
|
err <- sum(pred_labels != lb) / length(lb)
|
|
expect_equal(bst$evaluation_log[5, train_merror], err, tolerance = 5e-6)
|
|
# manually calculate error at the 1st iteration:
|
|
mpred <- predict(bst, as.matrix(iris[, -5]), reshape = TRUE, ntreelimit = 1)
|
|
pred_labels <- max.col(mpred) - 1
|
|
err <- sum(pred_labels != lb) / length(lb)
|
|
expect_equal(bst$evaluation_log[1, train_merror], err, tolerance = 5e-6)
|
|
|
|
mpred1 <- predict(bst, as.matrix(iris[, -5]), reshape = TRUE, iterationrange = c(1, 2))
|
|
expect_equal(mpred, mpred1)
|
|
|
|
d <- cbind(
|
|
x1 = rnorm(100),
|
|
x2 = rnorm(100),
|
|
x3 = rnorm(100)
|
|
)
|
|
y <- sample.int(10, 100, replace = TRUE) - 1
|
|
dtrain <- xgb.DMatrix(data = d, label = y, nthread = n_threads)
|
|
booster <- xgb.train(
|
|
params = list(tree_method = "hist", nthread = n_threads),
|
|
data = dtrain, nrounds = 4, num_class = 10,
|
|
objective = "multi:softprob"
|
|
)
|
|
predt <- predict(booster, as.matrix(d), reshape = TRUE, strict_shape = FALSE)
|
|
expect_equal(ncol(predt), 10)
|
|
expect_equal(rowSums(predt), rep(1, 100), tolerance = 1e-7)
|
|
})
|
|
|
|
test_that("train and predict softmax", {
|
|
lb <- as.numeric(iris$Species) - 1
|
|
set.seed(11)
|
|
expect_output(
|
|
bst <- xgboost(
|
|
data = as.matrix(iris[, -5]), label = lb,
|
|
max_depth = 3, eta = 0.5, nthread = n_threads, nrounds = 5,
|
|
objective = "multi:softmax", num_class = 3, eval_metric = "merror"
|
|
),
|
|
"train-merror"
|
|
)
|
|
expect_false(is.null(bst$evaluation_log))
|
|
expect_lt(bst$evaluation_log[, min(train_merror)], 0.025)
|
|
expect_equal(bst$niter * 3, xgb.ntree(bst))
|
|
|
|
pred <- predict(bst, as.matrix(iris[, -5]))
|
|
expect_length(pred, nrow(iris))
|
|
err <- sum(pred != lb) / length(lb)
|
|
expect_equal(bst$evaluation_log[5, train_merror], err, tolerance = 5e-6)
|
|
})
|
|
|
|
test_that("train and predict RF", {
|
|
set.seed(11)
|
|
lb <- train$label
|
|
# single iteration
|
|
bst <- xgboost(
|
|
data = train$data, label = lb, max_depth = 5,
|
|
nthread = n_threads,
|
|
nrounds = 1, objective = "binary:logistic", eval_metric = "error",
|
|
num_parallel_tree = 20, subsample = 0.6, colsample_bytree = 0.1
|
|
)
|
|
expect_equal(bst$niter, 1)
|
|
expect_equal(xgb.ntree(bst), 20)
|
|
|
|
pred <- predict(bst, train$data)
|
|
pred_err <- sum((pred > 0.5) != lb) / length(lb)
|
|
expect_lt(abs(bst$evaluation_log[1, train_error] - pred_err), 10e-6)
|
|
# expect_lt(pred_err, 0.03)
|
|
|
|
pred <- predict(bst, train$data, ntreelimit = 20)
|
|
pred_err_20 <- sum((pred > 0.5) != lb) / length(lb)
|
|
expect_equal(pred_err_20, pred_err)
|
|
|
|
pred1 <- predict(bst, train$data, iterationrange = c(1, 2))
|
|
expect_equal(pred, pred1)
|
|
})
|
|
|
|
test_that("train and predict RF with softprob", {
|
|
lb <- as.numeric(iris$Species) - 1
|
|
nrounds <- 15
|
|
set.seed(11)
|
|
bst <- xgboost(
|
|
data = as.matrix(iris[, -5]), label = lb,
|
|
max_depth = 3, eta = 0.9, nthread = n_threads, nrounds = nrounds,
|
|
objective = "multi:softprob", eval_metric = "merror",
|
|
num_class = 3, verbose = 0,
|
|
num_parallel_tree = 4, subsample = 0.5, colsample_bytree = 0.5
|
|
)
|
|
expect_equal(bst$niter, 15)
|
|
expect_equal(xgb.ntree(bst), 15 * 3 * 4)
|
|
# predict for all iterations:
|
|
pred <- predict(bst, as.matrix(iris[, -5]), reshape = TRUE)
|
|
expect_equal(dim(pred), c(nrow(iris), 3))
|
|
pred_labels <- max.col(pred) - 1
|
|
err <- sum(pred_labels != lb) / length(lb)
|
|
expect_equal(bst$evaluation_log[nrounds, train_merror], err, tolerance = 5e-6)
|
|
# predict for 7 iterations and adjust for 4 parallel trees per iteration
|
|
pred <- predict(bst, as.matrix(iris[, -5]), reshape = TRUE, ntreelimit = 7 * 4)
|
|
err <- sum((max.col(pred) - 1) != lb) / length(lb)
|
|
expect_equal(bst$evaluation_log[7, train_merror], err, tolerance = 5e-6)
|
|
})
|
|
|
|
test_that("use of multiple eval metrics works", {
|
|
expect_output(
|
|
bst <- xgboost(
|
|
data = train$data, label = train$label, max_depth = 2,
|
|
eta = 1, nthread = n_threads, nrounds = 2, objective = "binary:logistic",
|
|
eval_metric = "error", eval_metric = "auc", eval_metric = "logloss"
|
|
),
|
|
"train-error.*train-auc.*train-logloss"
|
|
)
|
|
expect_false(is.null(bst$evaluation_log))
|
|
expect_equal(dim(bst$evaluation_log), c(2, 4))
|
|
expect_equal(colnames(bst$evaluation_log), c("iter", "train_error", "train_auc", "train_logloss"))
|
|
expect_output(
|
|
bst2 <- xgboost(
|
|
data = train$data, label = train$label, max_depth = 2,
|
|
eta = 1, nthread = n_threads, nrounds = 2, objective = "binary:logistic",
|
|
eval_metric = list("error", "auc", "logloss")
|
|
),
|
|
"train-error.*train-auc.*train-logloss"
|
|
)
|
|
expect_false(is.null(bst2$evaluation_log))
|
|
expect_equal(dim(bst2$evaluation_log), c(2, 4))
|
|
expect_equal(colnames(bst2$evaluation_log), c("iter", "train_error", "train_auc", "train_logloss"))
|
|
})
|
|
|
|
|
|
test_that("training continuation works", {
|
|
dtrain <- xgb.DMatrix(train$data, label = train$label, nthread = n_threads)
|
|
watchlist <- list(train = dtrain)
|
|
param <- list(
|
|
objective = "binary:logistic", max_depth = 2, eta = 1, nthread = n_threads
|
|
)
|
|
|
|
# for the reference, use 4 iterations at once:
|
|
set.seed(11)
|
|
bst <- xgb.train(param, dtrain, nrounds = 4, watchlist, verbose = 0)
|
|
# first two iterations:
|
|
set.seed(11)
|
|
bst1 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0)
|
|
# continue for two more:
|
|
bst2 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0, xgb_model = bst1)
|
|
if (!windows_flag && !solaris_flag) {
|
|
expect_equal(bst$raw, bst2$raw)
|
|
}
|
|
expect_false(is.null(bst2$evaluation_log))
|
|
expect_equal(dim(bst2$evaluation_log), c(4, 2))
|
|
expect_equal(bst2$evaluation_log, bst$evaluation_log)
|
|
# test continuing from raw model data
|
|
bst2 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0, xgb_model = bst1$raw)
|
|
if (!windows_flag && !solaris_flag) {
|
|
expect_equal(bst$raw, bst2$raw)
|
|
}
|
|
expect_equal(dim(bst2$evaluation_log), c(2, 2))
|
|
# test continuing from a model in file
|
|
xgb.save(bst1, "xgboost.json")
|
|
bst2 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0, xgb_model = "xgboost.json")
|
|
if (!windows_flag && !solaris_flag) {
|
|
expect_equal(bst$raw, bst2$raw)
|
|
}
|
|
expect_equal(dim(bst2$evaluation_log), c(2, 2))
|
|
file.remove("xgboost.json")
|
|
})
|
|
|
|
test_that("model serialization works", {
|
|
out_path <- "model_serialization"
|
|
dtrain <- xgb.DMatrix(train$data, label = train$label, nthread = n_threads)
|
|
watchlist <- list(train = dtrain)
|
|
param <- list(objective = "binary:logistic", nthread = n_threads)
|
|
booster <- xgb.train(param, dtrain, nrounds = 4, watchlist)
|
|
raw <- xgb.serialize(booster)
|
|
saveRDS(raw, out_path)
|
|
raw <- readRDS(out_path)
|
|
|
|
loaded <- xgb.unserialize(raw)
|
|
raw_from_loaded <- xgb.serialize(loaded)
|
|
expect_equal(raw, raw_from_loaded)
|
|
file.remove(out_path)
|
|
})
|
|
|
|
test_that("xgb.cv works", {
|
|
set.seed(11)
|
|
expect_output(
|
|
cv <- xgb.cv(
|
|
data = train$data, label = train$label, max_depth = 2, nfold = 5,
|
|
eta = 1., nthread = n_threads, nrounds = 2, objective = "binary:logistic",
|
|
eval_metric = "error", verbose = TRUE
|
|
),
|
|
"train-error:"
|
|
)
|
|
expect_is(cv, "xgb.cv.synchronous")
|
|
expect_false(is.null(cv$evaluation_log))
|
|
expect_lt(cv$evaluation_log[, min(test_error_mean)], 0.03)
|
|
expect_lt(cv$evaluation_log[, min(test_error_std)], 0.008)
|
|
expect_equal(cv$niter, 2)
|
|
expect_false(is.null(cv$folds) && is.list(cv$folds))
|
|
expect_length(cv$folds, 5)
|
|
expect_false(is.null(cv$params) && is.list(cv$params))
|
|
expect_false(is.null(cv$callbacks))
|
|
expect_false(is.null(cv$call))
|
|
})
|
|
|
|
test_that("xgb.cv works with stratified folds", {
|
|
dtrain <- xgb.DMatrix(train$data, label = train$label, nthread = n_threads)
|
|
set.seed(314159)
|
|
cv <- xgb.cv(
|
|
data = dtrain, max_depth = 2, nfold = 5,
|
|
eta = 1., nthread = n_threads, nrounds = 2, objective = "binary:logistic",
|
|
verbose = TRUE, stratified = FALSE
|
|
)
|
|
set.seed(314159)
|
|
cv2 <- xgb.cv(
|
|
data = dtrain, max_depth = 2, nfold = 5,
|
|
eta = 1., nthread = n_threads, nrounds = 2, objective = "binary:logistic",
|
|
verbose = TRUE, stratified = TRUE
|
|
)
|
|
# Stratified folds should result in a different evaluation logs
|
|
expect_true(all(cv$evaluation_log[, test_logloss_mean] != cv2$evaluation_log[, test_logloss_mean]))
|
|
})
|
|
|
|
test_that("train and predict with non-strict classes", {
|
|
# standard dense matrix input
|
|
train_dense <- as.matrix(train$data)
|
|
bst <- xgboost(
|
|
data = train_dense, label = train$label, max_depth = 2,
|
|
eta = 1, nthread = n_threads, nrounds = 2, objective = "binary:logistic",
|
|
verbose = 0
|
|
)
|
|
pr0 <- predict(bst, train_dense)
|
|
|
|
# dense matrix-like input of non-matrix class
|
|
class(train_dense) <- "shmatrix"
|
|
expect_true(is.matrix(train_dense))
|
|
expect_error(
|
|
bst <- xgboost(
|
|
data = train_dense, label = train$label, max_depth = 2,
|
|
eta = 1, nthread = n_threads, nrounds = 2, objective = "binary:logistic",
|
|
verbose = 0
|
|
),
|
|
regexp = NA
|
|
)
|
|
expect_error(pr <- predict(bst, train_dense), regexp = NA)
|
|
expect_equal(pr0, pr)
|
|
|
|
# dense matrix-like input of non-matrix class with some inheritance
|
|
class(train_dense) <- c("pphmatrix", "shmatrix")
|
|
expect_true(is.matrix(train_dense))
|
|
expect_error(
|
|
bst <- xgboost(
|
|
data = train_dense, label = train$label, max_depth = 2,
|
|
eta = 1, nthread = n_threads, nrounds = 2, objective = "binary:logistic",
|
|
verbose = 0
|
|
),
|
|
regexp = NA
|
|
)
|
|
expect_error(pr <- predict(bst, train_dense), regexp = NA)
|
|
expect_equal(pr0, pr)
|
|
|
|
# when someone inherits from xgb.Booster, it should still be possible to use it as xgb.Booster
|
|
class(bst) <- c("super.Booster", "xgb.Booster")
|
|
expect_error(pr <- predict(bst, train_dense), regexp = NA)
|
|
expect_equal(pr0, pr)
|
|
})
|
|
|
|
test_that("max_delta_step works", {
|
|
dtrain <- xgb.DMatrix(
|
|
agaricus.train$data, label = agaricus.train$label, nthread = n_threads
|
|
)
|
|
watchlist <- list(train = dtrain)
|
|
param <- list(
|
|
objective = "binary:logistic", eval_metric = "logloss", max_depth = 2,
|
|
nthread = n_threads,
|
|
eta = 0.5
|
|
)
|
|
nrounds <- 5
|
|
# model with no restriction on max_delta_step
|
|
bst1 <- xgb.train(param, dtrain, nrounds, watchlist, verbose = 1)
|
|
# model with restricted max_delta_step
|
|
bst2 <- xgb.train(param, dtrain, nrounds, watchlist, verbose = 1, max_delta_step = 1)
|
|
# the no-restriction model is expected to have consistently lower loss during the initial iterations
|
|
expect_true(all(bst1$evaluation_log$train_logloss < bst2$evaluation_log$train_logloss))
|
|
expect_lt(mean(bst1$evaluation_log$train_logloss) / mean(bst2$evaluation_log$train_logloss), 0.8)
|
|
})
|
|
|
|
test_that("colsample_bytree works", {
|
|
# Randomly generate data matrix by sampling from uniform distribution [-1, 1]
|
|
set.seed(1)
|
|
train_x <- matrix(runif(1000, min = -1, max = 1), ncol = 100)
|
|
train_y <- as.numeric(rowSums(train_x) > 0)
|
|
test_x <- matrix(runif(1000, min = -1, max = 1), ncol = 100)
|
|
test_y <- as.numeric(rowSums(test_x) > 0)
|
|
colnames(train_x) <- paste0("Feature_", sprintf("%03d", 1:100))
|
|
colnames(test_x) <- paste0("Feature_", sprintf("%03d", 1:100))
|
|
dtrain <- xgb.DMatrix(train_x, label = train_y, nthread = n_threads)
|
|
dtest <- xgb.DMatrix(test_x, label = test_y, nthread = n_threads)
|
|
watchlist <- list(train = dtrain, eval = dtest)
|
|
## Use colsample_bytree = 0.01, so that roughly one out of 100 features is chosen for
|
|
## each tree
|
|
param <- list(
|
|
max_depth = 2, eta = 0, nthread = n_threads,
|
|
colsample_bytree = 0.01, objective = "binary:logistic",
|
|
eval_metric = "auc"
|
|
)
|
|
set.seed(2)
|
|
bst <- xgb.train(param, dtrain, nrounds = 100, watchlist, verbose = 0)
|
|
xgb.importance(model = bst)
|
|
# If colsample_bytree works properly, a variety of features should be used
|
|
# in the 100 trees
|
|
expect_gte(nrow(xgb.importance(model = bst)), 28)
|
|
})
|
|
|
|
test_that("Configuration works", {
|
|
bst <- xgboost(
|
|
data = train$data, label = train$label, max_depth = 2,
|
|
eta = 1, nthread = n_threads, nrounds = 2, objective = "binary:logistic",
|
|
eval_metric = "error", eval_metric = "auc", eval_metric = "logloss"
|
|
)
|
|
config <- xgb.config(bst)
|
|
xgb.config(bst) <- config
|
|
reloaded_config <- xgb.config(bst)
|
|
expect_equal(config, reloaded_config)
|
|
})
|
|
|
|
test_that("strict_shape works", {
|
|
n_rounds <- 2
|
|
|
|
test_strict_shape <- function(bst, X, n_groups) {
|
|
predt <- predict(bst, X, strict_shape = TRUE)
|
|
margin <- predict(bst, X, outputmargin = TRUE, strict_shape = TRUE)
|
|
contri <- predict(bst, X, predcontrib = TRUE, strict_shape = TRUE)
|
|
interact <- predict(bst, X, predinteraction = TRUE, strict_shape = TRUE)
|
|
leaf <- predict(bst, X, predleaf = TRUE, strict_shape = TRUE)
|
|
|
|
n_rows <- nrow(X)
|
|
n_cols <- ncol(X)
|
|
|
|
expect_equal(dim(predt), c(n_groups, n_rows))
|
|
expect_equal(dim(margin), c(n_groups, n_rows))
|
|
expect_equal(dim(contri), c(n_cols + 1, n_groups, n_rows))
|
|
expect_equal(dim(interact), c(n_cols + 1, n_cols + 1, n_groups, n_rows))
|
|
expect_equal(dim(leaf), c(1, n_groups, n_rounds, n_rows))
|
|
|
|
if (n_groups != 1) {
|
|
for (g in seq_len(n_groups)) {
|
|
expect_lt(max(abs(colSums(contri[, g, ]) - margin[g, ])), 1e-5)
|
|
}
|
|
}
|
|
}
|
|
|
|
test_iris <- function() {
|
|
y <- as.numeric(iris$Species) - 1
|
|
X <- as.matrix(iris[, -5])
|
|
|
|
bst <- xgboost(
|
|
data = X, label = y,
|
|
max_depth = 2, nrounds = n_rounds, nthread = n_threads,
|
|
objective = "multi:softprob", num_class = 3, eval_metric = "merror"
|
|
)
|
|
|
|
test_strict_shape(bst, X, 3)
|
|
}
|
|
|
|
|
|
test_agaricus <- function() {
|
|
data(agaricus.train, package = "xgboost")
|
|
X <- agaricus.train$data
|
|
y <- agaricus.train$label
|
|
|
|
bst <- xgboost(
|
|
data = X, label = y, max_depth = 2, nthread = n_threads,
|
|
nrounds = n_rounds, objective = "binary:logistic",
|
|
eval_metric = "error", eval_metric = "auc", eval_metric = "logloss"
|
|
)
|
|
|
|
test_strict_shape(bst, X, 1)
|
|
}
|
|
|
|
test_iris()
|
|
test_agaricus()
|
|
})
|
|
|
|
test_that("'predict' accepts CSR data", {
|
|
X <- agaricus.train$data
|
|
y <- agaricus.train$label
|
|
x_csc <- as(X[1L, , drop = FALSE], "CsparseMatrix")
|
|
x_csr <- as(x_csc, "RsparseMatrix")
|
|
x_spv <- as(x_csc, "sparseVector")
|
|
bst <- xgboost(
|
|
data = X, label = y, objective = "binary:logistic",
|
|
nrounds = 5L, verbose = FALSE, nthread = n_threads,
|
|
)
|
|
p_csc <- predict(bst, x_csc)
|
|
p_csr <- predict(bst, x_csr)
|
|
p_spv <- predict(bst, x_spv)
|
|
expect_equal(p_csc, p_csr)
|
|
expect_equal(p_csc, p_spv)
|
|
})
|
|
|
|
test_that("Quantile regression accepts multiple quantiles", {
|
|
data(mtcars)
|
|
y <- mtcars[, 1]
|
|
x <- as.matrix(mtcars[, -1])
|
|
dm <- xgb.DMatrix(data = x, label = y)
|
|
model <- xgb.train(
|
|
data = dm,
|
|
params = list(
|
|
objective = "reg:quantileerror",
|
|
tree_method = "exact",
|
|
quantile_alpha = c(0.05, 0.5, 0.95),
|
|
nthread = n_threads
|
|
),
|
|
nrounds = 15
|
|
)
|
|
pred <- predict(model, x, reshape = TRUE)
|
|
|
|
expect_equal(dim(pred)[1], nrow(x))
|
|
expect_equal(dim(pred)[2], 3)
|
|
expect_true(all(pred[, 1] <= pred[, 3]))
|
|
|
|
cors <- cor(y, pred)
|
|
expect_true(cors[2] > cors[1])
|
|
expect_true(cors[2] > cors[3])
|
|
expect_true(cors[2] > 0.85)
|
|
})
|
|
|
|
test_that("Can use multi-output labels with built-in objectives", {
|
|
data("mtcars")
|
|
y <- mtcars$mpg
|
|
x <- as.matrix(mtcars[, -1])
|
|
y_mirrored <- cbind(y, -y)
|
|
dm <- xgb.DMatrix(x, label = y_mirrored, nthread = n_threads)
|
|
model <- xgb.train(
|
|
params = list(
|
|
tree_method = "hist",
|
|
multi_strategy = "multi_output_tree",
|
|
objective = "reg:squarederror",
|
|
nthread = n_threads
|
|
),
|
|
data = dm,
|
|
nrounds = 5
|
|
)
|
|
pred <- predict(model, x, reshape = TRUE)
|
|
expect_equal(pred[, 1], -pred[, 2])
|
|
expect_true(cor(y, pred[, 1]) > 0.9)
|
|
expect_true(cor(y, pred[, 2]) < -0.9)
|
|
})
|
|
|
|
test_that("Can use multi-output labels with custom objectives", {
|
|
data("mtcars")
|
|
y <- mtcars$mpg
|
|
x <- as.matrix(mtcars[, -1])
|
|
y_mirrored <- cbind(y, -y)
|
|
dm <- xgb.DMatrix(x, label = y_mirrored, nthread = n_threads)
|
|
model <- xgb.train(
|
|
params = list(
|
|
tree_method = "hist",
|
|
multi_strategy = "multi_output_tree",
|
|
base_score = 0,
|
|
objective = function(pred, dtrain) {
|
|
y <- getinfo(dtrain, "label")
|
|
grad <- pred - y
|
|
hess <- rep(1, nrow(grad) * ncol(grad))
|
|
hess <- matrix(hess, nrow = nrow(grad))
|
|
return(list(grad = grad, hess = hess))
|
|
},
|
|
nthread = n_threads
|
|
),
|
|
data = dm,
|
|
nrounds = 5
|
|
)
|
|
pred <- predict(model, x, reshape = TRUE)
|
|
expect_equal(pred[, 1], -pred[, 2])
|
|
expect_true(cor(y, pred[, 1]) > 0.9)
|
|
expect_true(cor(y, pred[, 2]) < -0.9)
|
|
})
|
|
|
|
test_that("Can use ranking objectives with either 'qid' or 'group'", {
|
|
set.seed(123)
|
|
x <- matrix(rnorm(100 * 10), nrow = 100)
|
|
y <- sample(2, size = 100, replace = TRUE) - 1
|
|
qid <- c(rep(1, 20), rep(2, 20), rep(3, 60))
|
|
gr <- c(20, 20, 60)
|
|
|
|
dmat_qid <- xgb.DMatrix(x, label = y, qid = qid)
|
|
dmat_gr <- xgb.DMatrix(x, label = y, group = gr)
|
|
|
|
params <- list(tree_method = "hist",
|
|
lambdarank_num_pair_per_sample = 8,
|
|
objective = "rank:ndcg",
|
|
lambdarank_pair_method = "topk",
|
|
nthread = n_threads)
|
|
set.seed(123)
|
|
model_qid <- xgb.train(params, dmat_qid, nrounds = 5)
|
|
set.seed(123)
|
|
model_gr <- xgb.train(params, dmat_gr, nrounds = 5)
|
|
|
|
pred_qid <- predict(model_qid, x)
|
|
pred_gr <- predict(model_gr, x)
|
|
expect_equal(pred_qid, pred_gr)
|
|
})
|