206 lines
7.4 KiB
C++
206 lines
7.4 KiB
C++
/*!
|
|
* Copyright 2017-2022 by XGBoost Contributors
|
|
* \brief Data type for fast histogram aggregation.
|
|
*/
|
|
#include "gradient_index.h"
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <utility> // std::forward
|
|
|
|
#include "../common/column_matrix.h"
|
|
#include "../common/hist_util.h"
|
|
#include "../common/numeric.h"
|
|
#include "../common/threading_utils.h"
|
|
|
|
namespace xgboost {
|
|
|
|
GHistIndexMatrix::GHistIndexMatrix() : columns_{std::make_unique<common::ColumnMatrix>()} {}
|
|
|
|
GHistIndexMatrix::GHistIndexMatrix(DMatrix *p_fmat, bst_bin_t max_bins_per_feat,
|
|
double sparse_thresh, bool sorted_sketch, int32_t n_threads,
|
|
common::Span<float> hess) {
|
|
CHECK(p_fmat->SingleColBlock());
|
|
// We use sorted sketching for approx tree method since it's more efficient in
|
|
// computation time (but higher memory usage).
|
|
cut = common::SketchOnDMatrix(p_fmat, max_bins_per_feat, n_threads, sorted_sketch, hess);
|
|
|
|
max_num_bins = max_bins_per_feat;
|
|
const uint32_t nbins = cut.Ptrs().back();
|
|
hit_count.resize(nbins, 0);
|
|
hit_count_tloc_.resize(n_threads * nbins, 0);
|
|
|
|
size_t new_size = 1;
|
|
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
|
|
new_size += batch.Size();
|
|
}
|
|
|
|
row_ptr.resize(new_size);
|
|
row_ptr[0] = 0;
|
|
|
|
const bool isDense = p_fmat->IsDense();
|
|
this->isDense_ = isDense;
|
|
auto ft = p_fmat->Info().feature_types.ConstHostSpan();
|
|
|
|
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
|
|
this->PushBatch(batch, ft, n_threads);
|
|
}
|
|
this->columns_ = std::make_unique<common::ColumnMatrix>();
|
|
|
|
// hessian is empty when hist tree method is used or when dataset is empty
|
|
if (hess.empty() && !std::isnan(sparse_thresh)) {
|
|
// hist
|
|
CHECK(!sorted_sketch);
|
|
for (auto const &page : p_fmat->GetBatches<SparsePage>()) {
|
|
this->columns_->InitFromSparse(page, *this, sparse_thresh, n_threads);
|
|
}
|
|
}
|
|
}
|
|
|
|
GHistIndexMatrix::GHistIndexMatrix(MetaInfo const &info, common::HistogramCuts &&cuts,
|
|
bst_bin_t max_bin_per_feat)
|
|
: row_ptr(info.num_row_ + 1, 0),
|
|
hit_count(cuts.TotalBins(), 0),
|
|
cut{std::forward<common::HistogramCuts>(cuts)},
|
|
max_num_bins(max_bin_per_feat),
|
|
isDense_{info.num_col_ * info.num_row_ == info.num_nonzero_} {}
|
|
|
|
#if !defined(XGBOOST_USE_CUDA)
|
|
GHistIndexMatrix::GHistIndexMatrix(Context const *, MetaInfo const &, EllpackPage const &,
|
|
BatchParam const &) {
|
|
common::AssertGPUSupport();
|
|
}
|
|
#endif // defined(XGBOOST_USE_CUDA)
|
|
|
|
GHistIndexMatrix::~GHistIndexMatrix() = default;
|
|
|
|
void GHistIndexMatrix::PushBatch(SparsePage const &batch, common::Span<FeatureType const> ft,
|
|
int32_t n_threads) {
|
|
auto page = batch.GetView();
|
|
auto it = common::MakeIndexTransformIter([&](size_t ridx) { return page[ridx].size(); });
|
|
common::PartialSum(n_threads, it, it + page.Size(), static_cast<size_t>(0), row_ptr.begin());
|
|
data::SparsePageAdapterBatch adapter_batch{page};
|
|
auto is_valid = [](auto) { return true; }; // SparsePage always contains valid entries
|
|
PushBatchImpl(n_threads, adapter_batch, 0, is_valid, ft);
|
|
}
|
|
|
|
GHistIndexMatrix::GHistIndexMatrix(SparsePage const &batch, common::Span<FeatureType const> ft,
|
|
common::HistogramCuts const &cuts, int32_t max_bins_per_feat,
|
|
bool isDense, double sparse_thresh, int32_t n_threads) {
|
|
CHECK_GE(n_threads, 1);
|
|
base_rowid = batch.base_rowid;
|
|
isDense_ = isDense;
|
|
cut = cuts;
|
|
max_num_bins = max_bins_per_feat;
|
|
CHECK_EQ(row_ptr.size(), 0);
|
|
// The number of threads is pegged to the batch size. If the OMP
|
|
// block is parallelized on anything other than the batch/block size,
|
|
// it should be reassigned
|
|
row_ptr.resize(batch.Size() + 1, 0);
|
|
const uint32_t nbins = cut.Ptrs().back();
|
|
hit_count.resize(nbins, 0);
|
|
hit_count_tloc_.resize(n_threads * nbins, 0);
|
|
|
|
this->PushBatch(batch, ft, n_threads);
|
|
this->columns_ = std::make_unique<common::ColumnMatrix>();
|
|
if (!std::isnan(sparse_thresh)) {
|
|
this->columns_->InitFromSparse(batch, *this, sparse_thresh, n_threads);
|
|
}
|
|
}
|
|
|
|
template <typename Batch>
|
|
void GHistIndexMatrix::PushAdapterBatchColumns(Context const *ctx, Batch const &batch,
|
|
float missing, size_t rbegin) {
|
|
CHECK(columns_);
|
|
this->columns_->PushBatch(ctx->Threads(), batch, missing, *this, rbegin);
|
|
}
|
|
|
|
#define INSTANTIATION_PUSH(BatchT) \
|
|
template void GHistIndexMatrix::PushAdapterBatchColumns<BatchT>( \
|
|
Context const *ctx, BatchT const &batch, float missing, size_t rbegin);
|
|
|
|
INSTANTIATION_PUSH(data::CSRArrayAdapterBatch)
|
|
INSTANTIATION_PUSH(data::ArrayAdapterBatch)
|
|
INSTANTIATION_PUSH(data::SparsePageAdapterBatch)
|
|
|
|
#undef INSTANTIATION_PUSH
|
|
|
|
void GHistIndexMatrix::ResizeIndex(const size_t n_index, const bool isDense) {
|
|
if ((max_num_bins - 1 <= static_cast<int>(std::numeric_limits<uint8_t>::max())) && isDense) {
|
|
// compress dense index to uint8
|
|
index.SetBinTypeSize(common::kUint8BinsTypeSize);
|
|
index.Resize((sizeof(uint8_t)) * n_index);
|
|
} else if ((max_num_bins - 1 > static_cast<int>(std::numeric_limits<uint8_t>::max()) &&
|
|
max_num_bins - 1 <= static_cast<int>(std::numeric_limits<uint16_t>::max())) &&
|
|
isDense) {
|
|
// compress dense index to uint16
|
|
index.SetBinTypeSize(common::kUint16BinsTypeSize);
|
|
index.Resize((sizeof(uint16_t)) * n_index);
|
|
} else {
|
|
index.SetBinTypeSize(common::kUint32BinsTypeSize);
|
|
index.Resize((sizeof(uint32_t)) * n_index);
|
|
}
|
|
}
|
|
|
|
common::ColumnMatrix const &GHistIndexMatrix::Transpose() const {
|
|
CHECK(columns_);
|
|
return *columns_;
|
|
}
|
|
|
|
float GHistIndexMatrix::GetFvalue(size_t ridx, size_t fidx, bool is_cat) const {
|
|
auto const &values = cut.Values();
|
|
auto const &mins = cut.MinValues();
|
|
auto const &ptrs = cut.Ptrs();
|
|
if (is_cat) {
|
|
auto f_begin = ptrs[fidx];
|
|
auto f_end = ptrs[fidx + 1];
|
|
auto begin = RowIdx(ridx);
|
|
auto end = RowIdx(ridx + 1);
|
|
auto gidx = BinarySearchBin(begin, end, index, f_begin, f_end);
|
|
if (gidx == -1) {
|
|
return std::numeric_limits<float>::quiet_NaN();
|
|
}
|
|
return values[gidx];
|
|
}
|
|
|
|
auto get_bin_val = [&](auto &column) {
|
|
auto bin_idx = column[ridx];
|
|
if (bin_idx == common::DenseColumnIter<uint8_t, true>::kMissingId) {
|
|
return std::numeric_limits<float>::quiet_NaN();
|
|
}
|
|
return common::HistogramCuts::NumericBinValue(ptrs, values, mins, fidx, bin_idx);
|
|
};
|
|
|
|
if (columns_->GetColumnType(fidx) == common::kDenseColumn) {
|
|
if (columns_->AnyMissing()) {
|
|
return common::DispatchBinType(columns_->GetTypeSize(), [&](auto dtype) {
|
|
auto column = columns_->DenseColumn<decltype(dtype), true>(fidx);
|
|
return get_bin_val(column);
|
|
});
|
|
} else {
|
|
return common::DispatchBinType(columns_->GetTypeSize(), [&](auto dtype) {
|
|
auto column = columns_->DenseColumn<decltype(dtype), false>(fidx);
|
|
return get_bin_val(column);
|
|
});
|
|
}
|
|
} else {
|
|
return common::DispatchBinType(columns_->GetTypeSize(), [&](auto dtype) {
|
|
auto column = columns_->SparseColumn<decltype(dtype)>(fidx, 0);
|
|
return get_bin_val(column);
|
|
});
|
|
}
|
|
|
|
SPAN_CHECK(false);
|
|
return std::numeric_limits<float>::quiet_NaN();
|
|
}
|
|
|
|
bool GHistIndexMatrix::ReadColumnPage(dmlc::SeekStream *fi) {
|
|
return this->columns_->Read(fi, this->cut.Ptrs().data());
|
|
}
|
|
|
|
size_t GHistIndexMatrix::WriteColumnPage(dmlc::Stream *fo) const {
|
|
return this->columns_->Write(fo);
|
|
}
|
|
} // namespace xgboost
|