118 lines
3.9 KiB
R
118 lines
3.9 KiB
R
require(xgboost)
|
|
require(Matrix)
|
|
|
|
context("testing xgb.DMatrix functionality")
|
|
|
|
data(agaricus.test, package = 'xgboost')
|
|
test_data <- agaricus.test$data[1:100, ]
|
|
test_label <- agaricus.test$label[1:100]
|
|
|
|
test_that("xgb.DMatrix: basic construction", {
|
|
# from sparse matrix
|
|
dtest1 <- xgb.DMatrix(test_data, label = test_label)
|
|
|
|
# from dense matrix
|
|
dtest2 <- xgb.DMatrix(as.matrix(test_data), label = test_label)
|
|
expect_equal(getinfo(dtest1, 'label'), getinfo(dtest2, 'label'))
|
|
expect_equal(dim(dtest1), dim(dtest2))
|
|
|
|
#from dense integer matrix
|
|
int_data <- as.matrix(test_data)
|
|
storage.mode(int_data) <- "integer"
|
|
dtest3 <- xgb.DMatrix(int_data, label = test_label)
|
|
expect_equal(dim(dtest1), dim(dtest3))
|
|
})
|
|
|
|
test_that("xgb.DMatrix: saving, loading", {
|
|
# save to a local file
|
|
dtest1 <- xgb.DMatrix(test_data, label = test_label)
|
|
tmp_file <- tempfile('xgb.DMatrix_')
|
|
on.exit(unlink(tmp_file))
|
|
expect_true(xgb.DMatrix.save(dtest1, tmp_file))
|
|
# read from a local file
|
|
expect_output(dtest3 <- xgb.DMatrix(tmp_file), "entries loaded from")
|
|
expect_output(dtest3 <- xgb.DMatrix(tmp_file, silent = TRUE), NA)
|
|
unlink(tmp_file)
|
|
expect_equal(getinfo(dtest1, 'label'), getinfo(dtest3, 'label'))
|
|
|
|
# from a libsvm text file
|
|
tmp <- c("0 1:1 2:1", "1 3:1", "0 1:1")
|
|
tmp_file <- 'tmp.libsvm'
|
|
writeLines(tmp, tmp_file)
|
|
dtest4 <- xgb.DMatrix(tmp_file, silent = TRUE)
|
|
expect_equal(dim(dtest4), c(3, 4))
|
|
expect_equal(getinfo(dtest4, 'label'), c(0, 1, 0))
|
|
})
|
|
|
|
test_that("xgb.DMatrix: getinfo & setinfo", {
|
|
dtest <- xgb.DMatrix(test_data)
|
|
expect_true(setinfo(dtest, 'label', test_label))
|
|
labels <- getinfo(dtest, 'label')
|
|
expect_equal(test_label, getinfo(dtest, 'label'))
|
|
|
|
expect_true(setinfo(dtest, 'label_lower_bound', test_label))
|
|
expect_equal(test_label, getinfo(dtest, 'label_lower_bound'))
|
|
|
|
expect_true(setinfo(dtest, 'label_upper_bound', test_label))
|
|
expect_equal(test_label, getinfo(dtest, 'label_upper_bound'))
|
|
|
|
expect_true(length(getinfo(dtest, 'weight')) == 0)
|
|
expect_true(length(getinfo(dtest, 'base_margin')) == 0)
|
|
|
|
expect_true(setinfo(dtest, 'weight', test_label))
|
|
expect_true(setinfo(dtest, 'base_margin', test_label))
|
|
expect_true(setinfo(dtest, 'group', c(50, 50)))
|
|
expect_error(setinfo(dtest, 'group', test_label))
|
|
|
|
# providing character values will give an error
|
|
expect_error(setinfo(dtest, 'weight', rep('a', nrow(test_data))))
|
|
|
|
# any other label should error
|
|
expect_error(setinfo(dtest, 'asdf', test_label))
|
|
})
|
|
|
|
test_that("xgb.DMatrix: slice, dim", {
|
|
dtest <- xgb.DMatrix(test_data, label = test_label)
|
|
expect_equal(dim(dtest), dim(test_data))
|
|
dsub1 <- slice(dtest, 1:42)
|
|
expect_equal(nrow(dsub1), 42)
|
|
expect_equal(ncol(dsub1), ncol(test_data))
|
|
|
|
dsub2 <- dtest[1:42, ]
|
|
expect_equal(dim(dtest), dim(test_data))
|
|
expect_equal(getinfo(dsub1, 'label'), getinfo(dsub2, 'label'))
|
|
})
|
|
|
|
test_that("xgb.DMatrix: slice, trailing empty rows", {
|
|
data(agaricus.train, package = 'xgboost')
|
|
train_data <- agaricus.train$data
|
|
train_label <- agaricus.train$label
|
|
dtrain <- xgb.DMatrix(data = train_data, label = train_label)
|
|
slice(dtrain, 6513L)
|
|
train_data[6513, ] <- 0
|
|
dtrain <- xgb.DMatrix(data = train_data, label = train_label)
|
|
slice(dtrain, 6513L)
|
|
expect_equal(nrow(dtrain), 6513)
|
|
})
|
|
|
|
test_that("xgb.DMatrix: colnames", {
|
|
dtest <- xgb.DMatrix(test_data, label = test_label)
|
|
expect_equal(colnames(dtest), colnames(test_data))
|
|
expect_error(colnames(dtest) <- 'asdf')
|
|
new_names <- make.names(seq_len(ncol(test_data)))
|
|
expect_silent(colnames(dtest) <- new_names)
|
|
expect_equal(colnames(dtest), new_names)
|
|
expect_silent(colnames(dtest) <- NULL)
|
|
expect_null(colnames(dtest))
|
|
})
|
|
|
|
test_that("xgb.DMatrix: nrow is correct for a very sparse matrix", {
|
|
set.seed(123)
|
|
nr <- 1000
|
|
x <- rsparsematrix(nr, 100, density = 0.0005)
|
|
# we want it very sparse, so that last rows are empty
|
|
expect_lt(max(x@i), nr)
|
|
dtest <- xgb.DMatrix(x)
|
|
expect_equal(dim(dtest), dim(x))
|
|
})
|