98 lines
3.9 KiB
Python

import os
from nvflare.apis.executor import Executor
from nvflare.apis.fl_constant import FLContextKey, ReturnCode
from nvflare.apis.fl_context import FLContext
from nvflare.apis.shareable import Shareable, make_reply
from nvflare.apis.signal import Signal
import xgboost as xgb
from xgboost import callback
class SupportedTasks(object):
TRAIN = "train"
class XGBoostTrainer(Executor):
def __init__(self, server_address: str, world_size: int, server_cert_path: str,
client_key_path: str, client_cert_path: str):
"""Trainer for federated XGBoost.
Args:
server_address: address for the gRPC server to connect to.
world_size: the number of sites.
server_cert_path: the path to the server certificate file.
client_key_path: the path to the client key file.
client_cert_path: the path to the client certificate file.
"""
super().__init__()
self._server_address = server_address
self._world_size = world_size
self._server_cert_path = server_cert_path
self._client_key_path = client_key_path
self._client_cert_path = client_cert_path
def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext,
abort_signal: Signal) -> Shareable:
self.log_info(fl_ctx, f"Executing {task_name}")
try:
if task_name == SupportedTasks.TRAIN:
self._do_training(fl_ctx)
return make_reply(ReturnCode.OK)
else:
self.log_error(fl_ctx, f"{task_name} is not a supported task.")
return make_reply(ReturnCode.TASK_UNKNOWN)
except BaseException as e:
self.log_exception(fl_ctx,
f"Task {task_name} failed. Exception: {e.__str__()}")
return make_reply(ReturnCode.EXECUTION_EXCEPTION)
def _do_training(self, fl_ctx: FLContext):
client_name = fl_ctx.get_prop(FLContextKey.CLIENT_NAME)
rank = int(client_name.split('-')[1]) - 1
communicator_env = {
'xgboost_communicator': 'federated',
'federated_server_address': self._server_address,
'federated_world_size': self._world_size,
'federated_rank': rank,
'federated_server_cert': self._server_cert_path,
'federated_client_key': self._client_key_path,
'federated_client_cert': self._client_cert_path
}
with xgb.collective.CommunicatorContext(**communicator_env):
# Load file, file will not be sharded in federated mode.
if rank == 0:
label = '&label_column=0'
else:
label = ''
dtrain = xgb.DMatrix(f'higgs.train.csv?format=csv{label}', data_split_mode=1)
dtest = xgb.DMatrix(f'higgs.test.csv?format=csv{label}', data_split_mode=1)
# specify parameters via map
param = {
'validate_parameters': True,
'eta': 0.1,
'gamma': 1.0,
'max_depth': 8,
'min_child_weight': 100,
'tree_method': 'approx',
'grow_policy': 'depthwise',
'objective': 'binary:logistic',
'eval_metric': 'auc',
}
# specify validations set to watch performance
watchlist = [(dtest, "eval"), (dtrain, "train")]
# number of boosting rounds
num_round = 10
bst = xgb.train(param, dtrain, num_round, evals=watchlist, early_stopping_rounds=2)
# Save the model.
workspace = fl_ctx.get_prop(FLContextKey.WORKSPACE_OBJECT)
run_number = fl_ctx.get_prop(FLContextKey.CURRENT_RUN)
run_dir = workspace.get_run_dir(run_number)
bst.save_model(os.path.join(run_dir, "higgs.model.federated.vertical.json"))
xgb.collective.communicator_print("Finished training\n")