xgboost/demo/rank/mq2008.conf
2014-05-12 22:21:07 +08:00

37 lines
1.0 KiB
Plaintext

# General Parameters, see comment for each definition
# choose the tree booster, 0: tree, 1: linear
booster_type = 0
# this is the only difference with classification, use 0: linear regression
# when labels are in [0,1] we can also use 1: logistic regression
loss_type = 0
objective="rank:pairwise"
#objective="rank:softmax"
#objective="lambdarank:map"
#objective="lambdarank:ndcg"
num_feature=50
# Tree Booster Parameters
# step size shrinkage
bst:eta = 1.0
# minimum loss reduction required to make a further partition
bst:gamma = 1.0
# minimum sum of instance weight(hessian) needed in a child
bst:min_child_weight = 1
# maximum depth of a tree
bst:max_depth = 3
# Task parameters
# the number of round to do boosting
num_round = 2
# 0 means do not save any model except the final round model
save_period = 0
# The path of training data
data = "mq2008.train"
# The path of validation data, used to monitor training process, here [test] sets name of the validation set
eval[test] = "mq2008.vali"
# The path of test data
test:data = "mq2008.test"