xgboost/demo/kaggle-otto/otto_train_pred.R
2022-12-17 01:22:41 +08:00

44 lines
1.2 KiB
R

require(xgboost)
require(methods)
train <- read.csv('data/train.csv',header=TRUE,stringsAsFactors = FALSE)
test <- read.csv('data/test.csv',header=TRUE,stringsAsFactors = FALSE)
train <- train[,-1]
test <- test[,-1]
y <- train[,ncol(train)]
y <- gsub('Class_','',y)
y <- as.integer(y)-1 # xgboost take features in [0,numOfClass)
x <- rbind(train[,-ncol(train)],test)
x <- as.matrix(x)
x <- matrix(as.numeric(x),nrow(x),ncol(x))
trind <- 1:length(y)
teind <- (nrow(train)+1):nrow(x)
# Set necessary parameter
param <- list("objective" = "multi:softprob",
"eval_metric" = "mlogloss",
"num_class" = 9,
"nthread" = 8)
# Run Cross Validation
cv.nrounds <- 50
bst.cv <- xgb.cv(param=param, data = x[trind,], label = y,
nfold = 3, nrounds=cv.nrounds)
# Train the model
nrounds <- 50
bst <- xgboost(param=param, data = x[trind,], label = y, nrounds=nrounds)
# Make prediction
pred <- predict(bst,x[teind,])
pred <- matrix(pred,9,length(pred)/9)
pred <- t(pred)
# Output submission
pred <- format(pred, digits=2,scientific=F) # shrink the size of submission
pred <- data.frame(1:nrow(pred),pred)
names(pred) <- c('id', paste0('Class_',1:9))
write.csv(pred,file='submission.csv', quote=FALSE,row.names=FALSE)