xgboost/tests/cpp/common/test_hist_util.cc
Rong Ou 6edddd7966 Refactor DMatrix to return batches of different page types (#4686)
* Use explicit template parameter for specifying page type.
2019-08-03 15:10:34 -04:00

128 lines
3.4 KiB
C++

#include <gtest/gtest.h>
#include <vector>
#include <string>
#include <utility>
#include "../../../src/common/hist_util.h"
#include "../helpers.h"
namespace xgboost {
namespace common {
TEST(CutsBuilder, SearchGroupInd) {
size_t constexpr kNumGroups = 4;
size_t constexpr kNumRows = 17;
size_t constexpr kNumCols = 15;
auto pp_mat = CreateDMatrix(kNumRows, kNumCols, 0);
auto& p_mat = *pp_mat;
std::vector<bst_int> group(kNumGroups);
group[0] = 2;
group[1] = 3;
group[2] = 7;
group[3] = 5;
p_mat->Info().SetInfo(
"group", group.data(), DataType::kUInt32, kNumGroups);
HistogramCuts hmat;
size_t group_ind = CutsBuilder::SearchGroupIndFromRow(p_mat->Info().group_ptr_, 0);
ASSERT_EQ(group_ind, 0);
group_ind = CutsBuilder::SearchGroupIndFromRow(p_mat->Info().group_ptr_, 5);
ASSERT_EQ(group_ind, 2);
EXPECT_ANY_THROW(CutsBuilder::SearchGroupIndFromRow(p_mat->Info().group_ptr_, 17));
delete pp_mat;
}
namespace {
class SparseCutsWrapper : public SparseCuts {
public:
std::vector<uint32_t> const& ColPtrs() const { return p_cuts_->Ptrs(); }
std::vector<float> const& ColValues() const { return p_cuts_->Values(); }
};
} // anonymous namespace
TEST(SparseCuts, SingleThreadedBuild) {
size_t constexpr kRows = 267;
size_t constexpr kCols = 31;
size_t constexpr kBins = 256;
// Dense matrix.
auto pp_mat = CreateDMatrix(kRows, kCols, 0);
DMatrix* p_fmat = (*pp_mat).get();
common::GHistIndexMatrix hmat;
hmat.Init(p_fmat, kBins);
HistogramCuts cuts;
SparseCuts indices(&cuts);
auto const& page = *(p_fmat->GetBatches<xgboost::CSCPage>().begin());
indices.SingleThreadBuild(page, p_fmat->Info(), kBins, false, 0, page.Size(), 0);
ASSERT_EQ(hmat.cut.Ptrs().size(), cuts.Ptrs().size());
ASSERT_EQ(hmat.cut.Ptrs(), cuts.Ptrs());
ASSERT_EQ(hmat.cut.Values(), cuts.Values());
ASSERT_EQ(hmat.cut.MinValues(), cuts.MinValues());
delete pp_mat;
}
TEST(SparseCuts, MultiThreadedBuild) {
size_t constexpr kRows = 17;
size_t constexpr kCols = 15;
size_t constexpr kBins = 255;
omp_ulong ori_nthreads = omp_get_max_threads();
omp_set_num_threads(16);
auto Compare =
#if defined(_MSC_VER) // msvc fails to capture
[kBins](DMatrix* p_fmat) {
#else
[](DMatrix* p_fmat) {
#endif
HistogramCuts threaded_container;
SparseCuts threaded_indices(&threaded_container);
threaded_indices.Build(p_fmat, kBins);
HistogramCuts container;
SparseCuts indices(&container);
auto const& page = *(p_fmat->GetBatches<xgboost::CSCPage>().begin());
indices.SingleThreadBuild(page, p_fmat->Info(), kBins, false, 0, page.Size(), 0);
ASSERT_EQ(container.Ptrs().size(), threaded_container.Ptrs().size());
ASSERT_EQ(container.Values().size(), threaded_container.Values().size());
for (uint32_t i = 0; i < container.Ptrs().size(); ++i) {
ASSERT_EQ(container.Ptrs()[i], threaded_container.Ptrs()[i]);
}
for (uint32_t i = 0; i < container.Values().size(); ++i) {
ASSERT_EQ(container.Values()[i], threaded_container.Values()[i]);
}
};
{
auto pp_mat = CreateDMatrix(kRows, kCols, 0);
DMatrix* p_fmat = (*pp_mat).get();
Compare(p_fmat);
delete pp_mat;
}
{
auto pp_mat = CreateDMatrix(kRows, kCols, 0.0001);
DMatrix* p_fmat = (*pp_mat).get();
Compare(p_fmat);
delete pp_mat;
}
omp_set_num_threads(ori_nthreads);
}
} // namespace common
} // namespace xgboost