xgboost/tests/cpp/tree/test_gpu_hist.cu

420 lines
15 KiB
Plaintext

/*!
* Copyright 2017-2022 XGBoost contributors
*/
#include <gtest/gtest.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <xgboost/base.h>
#include <random>
#include <string>
#include <vector>
#include "../../../src/common/common.h"
#include "../../../src/data/sparse_page_source.h"
#include "../../../src/tree/constraints.cuh"
#include "../../../src/tree/updater_gpu_common.cuh"
#include "../../../src/tree/updater_gpu_hist.cu"
#include "../filesystem.h" // dmlc::TemporaryDirectory
#include "../helpers.h"
#include "../histogram_helpers.h"
#include "xgboost/generic_parameters.h"
#include "xgboost/json.h"
namespace xgboost {
namespace tree {
TEST(GpuHist, DeviceHistogram) {
// Ensures that node allocates correctly after reaching `kStopGrowingSize`.
dh::safe_cuda(cudaSetDevice(0));
constexpr size_t kNBins = 128;
constexpr int kNNodes = 4;
constexpr size_t kStopGrowing = kNNodes * kNBins * 2u;
DeviceHistogramStorage<kStopGrowing> histogram;
histogram.Init(0, kNBins);
for (int i = 0; i < kNNodes; ++i) {
histogram.AllocateHistograms({i});
}
histogram.Reset();
ASSERT_EQ(histogram.Data().size(), kStopGrowing);
// Use allocated memory but do not erase nidx_map.
for (int i = 0; i < kNNodes; ++i) {
histogram.AllocateHistograms({i});
}
for (int i = 0; i < kNNodes; ++i) {
ASSERT_TRUE(histogram.HistogramExists(i));
}
// Add two new nodes
histogram.AllocateHistograms({kNNodes});
histogram.AllocateHistograms({kNNodes + 1});
// Old cached nodes should still exist
for (int i = 0; i < kNNodes; ++i) {
ASSERT_TRUE(histogram.HistogramExists(i));
}
// Should be deleted
ASSERT_FALSE(histogram.HistogramExists(kNNodes));
// Most recent node should exist
ASSERT_TRUE(histogram.HistogramExists(kNNodes + 1));
// Add same node again - should fail
EXPECT_ANY_THROW(histogram.AllocateHistograms({kNNodes + 1}););
}
std::vector<GradientPairPrecise> GetHostHistGpair() {
// 24 bins, 3 bins for each feature (column).
std::vector<GradientPairPrecise> hist_gpair = {
{0.8314f, 0.7147f}, {1.7989f, 3.7312f}, {3.3846f, 3.4598f},
{2.9277f, 3.5886f}, {1.8429f, 2.4152f}, {1.2443f, 1.9019f},
{1.6380f, 2.9174f}, {1.5657f, 2.5107f}, {2.8111f, 2.4776f},
{2.1322f, 3.0651f}, {3.2927f, 3.8540f}, {0.5899f, 0.9866f},
{1.5185f, 1.6263f}, {2.0686f, 3.1844f}, {2.4278f, 3.0950f},
{1.5105f, 2.1403f}, {2.6922f, 4.2217f}, {1.8122f, 1.5437f},
{0.0000f, 0.0000f}, {4.3245f, 5.7955f}, {1.6903f, 2.1103f},
{2.4012f, 4.4754f}, {3.6136f, 3.4303f}, {0.0000f, 0.0000f}
};
return hist_gpair;
}
template <typename GradientSumT>
void TestBuildHist(bool use_shared_memory_histograms) {
int const kNRows = 16, kNCols = 8;
TrainParam param;
std::vector<std::pair<std::string, std::string>> args {
{"max_depth", "6"},
{"max_leaves", "0"},
};
param.Init(args);
auto page = BuildEllpackPage(kNRows, kNCols);
BatchParam batch_param{};
Context ctx{CreateEmptyGenericParam(0)};
GPUHistMakerDevice<GradientSumT> maker(&ctx, page.get(), {}, kNRows, param, kNCols, kNCols,
batch_param);
xgboost::SimpleLCG gen;
xgboost::SimpleRealUniformDistribution<bst_float> dist(0.0f, 1.0f);
HostDeviceVector<GradientPair> gpair(kNRows);
for (auto &gp : gpair.HostVector()) {
bst_float grad = dist(&gen);
bst_float hess = dist(&gen);
gp = GradientPair(grad, hess);
}
gpair.SetDevice(0);
thrust::host_vector<common::CompressedByteT> h_gidx_buffer (page->gidx_buffer.HostVector());
maker.row_partitioner.reset(new RowPartitioner(0, kNRows));
maker.hist.AllocateHistograms({0});
maker.gpair = gpair.DeviceSpan();
maker.quantiser.reset(new GradientQuantiser(maker.gpair));
BuildGradientHistogram(
page->GetDeviceAccessor(0), maker.feature_groups->DeviceAccessor(0),
gpair.DeviceSpan(), maker.row_partitioner->GetRows(0),
maker.hist.GetNodeHistogram(0), *maker.quantiser,
!use_shared_memory_histograms);
DeviceHistogramStorage<>& d_hist = maker.hist;
auto node_histogram = d_hist.GetNodeHistogram(0);
// d_hist.data stored in float, not gradient pair
thrust::host_vector<GradientPairInt64> h_result (node_histogram.size());
dh::safe_cuda(cudaMemcpy(h_result.data(), node_histogram.data(), node_histogram.size_bytes(),
cudaMemcpyDeviceToHost));
std::vector<GradientPairPrecise> solution = GetHostHistGpair();
for (size_t i = 0; i < h_result.size(); ++i) {
auto result = maker.quantiser->ToFloatingPoint(h_result[i]);
EXPECT_NEAR(result.GetGrad(), solution[i].GetGrad(), 0.01f);
EXPECT_NEAR(result.GetHess(), solution[i].GetHess(), 0.01f);
}
}
TEST(GpuHist, BuildHistGlobalMem) {
TestBuildHist<GradientPairPrecise>(false);
}
TEST(GpuHist, BuildHistSharedMem) {
TestBuildHist<GradientPairPrecise>(true);
}
HistogramCutsWrapper GetHostCutMatrix () {
HistogramCutsWrapper cmat;
cmat.SetPtrs({0, 3, 6, 9, 12, 15, 18, 21, 24});
cmat.SetMins({0.1f, 0.2f, 0.3f, 0.1f, 0.2f, 0.3f, 0.2f, 0.2f});
// 24 cut fields, 3 cut fields for each feature (column).
// Each row of the cut represents the cuts for a data column.
cmat.SetValues({0.30f, 0.67f, 1.64f,
0.32f, 0.77f, 1.95f,
0.29f, 0.70f, 1.80f,
0.32f, 0.75f, 1.85f,
0.18f, 0.59f, 1.69f,
0.25f, 0.74f, 2.00f,
0.26f, 0.74f, 1.98f,
0.26f, 0.71f, 1.83f});
return cmat;
}
inline GradientQuantiser DummyRoundingFactor() {
thrust::device_vector<GradientPair> gpair(1);
gpair[0] = {1000.f, 1000.f}; // Tests should not exceed sum of 1000
return GradientQuantiser(dh::ToSpan(gpair));
}
void TestHistogramIndexImpl() {
// Test if the compressed histogram index matches when using a sparse
// dmatrix with and without using external memory
int constexpr kNRows = 1000, kNCols = 10;
// Build 2 matrices and build a histogram maker with that
GenericParameter generic_param(CreateEmptyGenericParam(0));
tree::GPUHistMaker hist_maker{&generic_param,ObjInfo{ObjInfo::kRegression}},
hist_maker_ext{&generic_param,ObjInfo{ObjInfo::kRegression}};
std::unique_ptr<DMatrix> hist_maker_dmat(
CreateSparsePageDMatrixWithRC(kNRows, kNCols, 0, true));
dmlc::TemporaryDirectory tempdir;
std::unique_ptr<DMatrix> hist_maker_ext_dmat(
CreateSparsePageDMatrixWithRC(kNRows, kNCols, 128UL, true, tempdir));
std::vector<std::pair<std::string, std::string>> training_params = {
{"max_depth", "10"},
{"max_leaves", "0"}
};
hist_maker.Configure(training_params);
hist_maker.InitDataOnce(hist_maker_dmat.get());
hist_maker_ext.Configure(training_params);
hist_maker_ext.InitDataOnce(hist_maker_ext_dmat.get());
// Extract the device maker from the histogram makers and from that its compressed
// histogram index
const auto &maker = hist_maker.maker;
auto grad = GenerateRandomGradients(kNRows);
grad.SetDevice(0);
maker->Reset(&grad, hist_maker_dmat.get(), kNCols);
std::vector<common::CompressedByteT> h_gidx_buffer(maker->page->gidx_buffer.HostVector());
const auto &maker_ext = hist_maker_ext.maker;
maker_ext->Reset(&grad, hist_maker_ext_dmat.get(), kNCols);
std::vector<common::CompressedByteT> h_gidx_buffer_ext(maker_ext->page->gidx_buffer.HostVector());
ASSERT_EQ(maker->page->Cuts().TotalBins(), maker_ext->page->Cuts().TotalBins());
ASSERT_EQ(maker->page->gidx_buffer.Size(), maker_ext->page->gidx_buffer.Size());
}
TEST(GpuHist, TestHistogramIndex) {
TestHistogramIndexImpl();
}
void UpdateTree(HostDeviceVector<GradientPair>* gpair, DMatrix* dmat,
size_t gpu_page_size, RegTree* tree,
HostDeviceVector<bst_float>* preds, float subsample = 1.0f,
const std::string& sampling_method = "uniform",
int max_bin = 2) {
if (gpu_page_size > 0) {
// Loop over the batches and count the records
int64_t batch_count = 0;
int64_t row_count = 0;
for (const auto& batch : dmat->GetBatches<EllpackPage>({0, max_bin})) {
EXPECT_LT(batch.Size(), dmat->Info().num_row_);
batch_count++;
row_count += batch.Size();
}
EXPECT_GE(batch_count, 2);
EXPECT_EQ(row_count, dmat->Info().num_row_);
}
Args args{
{"max_depth", "2"},
{"max_bin", std::to_string(max_bin)},
{"min_child_weight", "0.0"},
{"reg_alpha", "0"},
{"reg_lambda", "0"},
{"subsample", std::to_string(subsample)},
{"sampling_method", sampling_method},
};
GenericParameter generic_param(CreateEmptyGenericParam(0));
tree::GPUHistMaker hist_maker{&generic_param,ObjInfo{ObjInfo::kRegression}};
hist_maker.Configure(args);
std::vector<HostDeviceVector<bst_node_t>> position(1);
hist_maker.Update(gpair, dmat, common::Span<HostDeviceVector<bst_node_t>>{position}, {tree});
auto cache = linalg::VectorView<float>{preds->DeviceSpan(), {preds->Size()}, 0};
hist_maker.UpdatePredictionCache(dmat, cache);
}
TEST(GpuHist, UniformSampling) {
constexpr size_t kRows = 4096;
constexpr size_t kCols = 2;
constexpr float kSubsample = 0.9999;
common::GlobalRandom().seed(1994);
// Create an in-memory DMatrix.
std::unique_ptr<DMatrix> dmat(CreateSparsePageDMatrixWithRC(kRows, kCols, 0, true));
auto gpair = GenerateRandomGradients(kRows);
// Build a tree using the in-memory DMatrix.
RegTree tree;
HostDeviceVector<bst_float> preds(kRows, 0.0, 0);
UpdateTree(&gpair, dmat.get(), 0, &tree, &preds, 1.0, "uniform", kRows);
// Build another tree using sampling.
RegTree tree_sampling;
HostDeviceVector<bst_float> preds_sampling(kRows, 0.0, 0);
UpdateTree(&gpair, dmat.get(), 0, &tree_sampling, &preds_sampling, kSubsample,
"uniform", kRows);
// Make sure the predictions are the same.
auto preds_h = preds.ConstHostVector();
auto preds_sampling_h = preds_sampling.ConstHostVector();
for (size_t i = 0; i < kRows; i++) {
EXPECT_NEAR(preds_h[i], preds_sampling_h[i], 1e-8);
}
}
TEST(GpuHist, GradientBasedSampling) {
constexpr size_t kRows = 4096;
constexpr size_t kCols = 2;
constexpr float kSubsample = 0.9999;
common::GlobalRandom().seed(1994);
// Create an in-memory DMatrix.
std::unique_ptr<DMatrix> dmat(CreateSparsePageDMatrixWithRC(kRows, kCols, 0, true));
auto gpair = GenerateRandomGradients(kRows);
// Build a tree using the in-memory DMatrix.
RegTree tree;
HostDeviceVector<bst_float> preds(kRows, 0.0, 0);
UpdateTree(&gpair, dmat.get(), 0, &tree, &preds, 1.0, "uniform", kRows);
// Build another tree using sampling.
RegTree tree_sampling;
HostDeviceVector<bst_float> preds_sampling(kRows, 0.0, 0);
UpdateTree(&gpair, dmat.get(), 0, &tree_sampling, &preds_sampling, kSubsample,
"gradient_based", kRows);
// Make sure the predictions are the same.
auto preds_h = preds.ConstHostVector();
auto preds_sampling_h = preds_sampling.ConstHostVector();
for (size_t i = 0; i < kRows; i++) {
EXPECT_NEAR(preds_h[i], preds_sampling_h[i], 1e-3);
}
}
TEST(GpuHist, ExternalMemory) {
constexpr size_t kRows = 4096;
constexpr size_t kCols = 2;
constexpr size_t kPageSize = 1024;
dmlc::TemporaryDirectory tmpdir;
// Create a DMatrix with multiple batches.
std::unique_ptr<DMatrix> dmat_ext(
CreateSparsePageDMatrix(kRows, kCols, kRows / kPageSize, tmpdir.path + "/cache"));
// Create a single batch DMatrix.
std::unique_ptr<DMatrix> dmat(CreateSparsePageDMatrix(kRows, kCols, 1, tmpdir.path + "/cache"));
auto gpair = GenerateRandomGradients(kRows);
// Build a tree using the in-memory DMatrix.
RegTree tree;
HostDeviceVector<bst_float> preds(kRows, 0.0, 0);
UpdateTree(&gpair, dmat.get(), 0, &tree, &preds, 1.0, "uniform", kRows);
// Build another tree using multiple ELLPACK pages.
RegTree tree_ext;
HostDeviceVector<bst_float> preds_ext(kRows, 0.0, 0);
UpdateTree(&gpair, dmat_ext.get(), kPageSize, &tree_ext, &preds_ext, 1.0, "uniform", kRows);
// Make sure the predictions are the same.
auto preds_h = preds.ConstHostVector();
auto preds_ext_h = preds_ext.ConstHostVector();
for (size_t i = 0; i < kRows; i++) {
EXPECT_NEAR(preds_h[i], preds_ext_h[i], 1e-6);
}
}
TEST(GpuHist, ExternalMemoryWithSampling) {
constexpr size_t kRows = 4096;
constexpr size_t kCols = 2;
constexpr size_t kPageSize = 1024;
constexpr float kSubsample = 0.5;
const std::string kSamplingMethod = "gradient_based";
common::GlobalRandom().seed(0);
dmlc::TemporaryDirectory tmpdir;
// Create a single batch DMatrix.
std::unique_ptr<DMatrix> dmat(CreateSparsePageDMatrix(kRows, kCols, 1, tmpdir.path + "/cache"));
// Create a DMatrix with multiple batches.
std::unique_ptr<DMatrix> dmat_ext(
CreateSparsePageDMatrix(kRows, kCols, kRows / kPageSize, tmpdir.path + "/cache"));
auto gpair = GenerateRandomGradients(kRows);
// Build a tree using the in-memory DMatrix.
auto rng = common::GlobalRandom();
RegTree tree;
HostDeviceVector<bst_float> preds(kRows, 0.0, 0);
UpdateTree(&gpair, dmat.get(), 0, &tree, &preds, kSubsample, kSamplingMethod,
kRows);
// Build another tree using multiple ELLPACK pages.
common::GlobalRandom() = rng;
RegTree tree_ext;
HostDeviceVector<bst_float> preds_ext(kRows, 0.0, 0);
UpdateTree(&gpair, dmat_ext.get(), kPageSize, &tree_ext, &preds_ext,
kSubsample, kSamplingMethod, kRows);
// Make sure the predictions are the same.
auto preds_h = preds.ConstHostVector();
auto preds_ext_h = preds_ext.ConstHostVector();
for (size_t i = 0; i < kRows; i++) {
ASSERT_NEAR(preds_h[i], preds_ext_h[i], 1e-3);
}
}
TEST(GpuHist, ConfigIO) {
GenericParameter generic_param(CreateEmptyGenericParam(0));
std::unique_ptr<TreeUpdater> updater{
TreeUpdater::Create("grow_gpu_hist", &generic_param, ObjInfo{ObjInfo::kRegression})};
updater->Configure(Args{});
Json j_updater { Object() };
updater->SaveConfig(&j_updater);
ASSERT_TRUE(IsA<Object>(j_updater["gpu_hist_train_param"]));
ASSERT_TRUE(IsA<Object>(j_updater["train_param"]));
updater->LoadConfig(j_updater);
Json j_updater_roundtrip { Object() };
updater->SaveConfig(&j_updater_roundtrip);
ASSERT_TRUE(IsA<Object>(j_updater_roundtrip["gpu_hist_train_param"]));
ASSERT_TRUE(IsA<Object>(j_updater_roundtrip["train_param"]));
ASSERT_EQ(j_updater, j_updater_roundtrip);
}
TEST(GpuHist, MaxDepth) {
GenericParameter generic_param(CreateEmptyGenericParam(0));
size_t constexpr kRows = 16;
size_t constexpr kCols = 4;
auto p_mat = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix();
auto learner = std::unique_ptr<Learner>(Learner::Create({p_mat}));
learner->SetParam("max_depth", "32");
learner->Configure();
ASSERT_THROW({learner->UpdateOneIter(0, p_mat);}, dmlc::Error);
}
} // namespace tree
} // namespace xgboost