xgboost/src/common/hist_util.cuh
2021-04-07 04:50:52 +08:00

286 lines
12 KiB
Plaintext

/*!
* Copyright 2020 XGBoost contributors
*
* \brief Front end and utilities for GPU based sketching. Works on sliding window
* instead of stream.
*/
#ifndef COMMON_HIST_UTIL_CUH_
#define COMMON_HIST_UTIL_CUH_
#include <thrust/host_vector.h>
#include "hist_util.h"
#include "quantile.cuh"
#include "device_helpers.cuh"
#include "timer.h"
#include "../data/device_adapter.cuh"
namespace xgboost {
namespace common {
namespace detail {
struct EntryCompareOp {
__device__ bool operator()(const Entry& a, const Entry& b) {
if (a.index == b.index) {
return a.fvalue < b.fvalue;
}
return a.index < b.index;
}
};
// Get column size from adapter batch and for output cuts.
template <typename Iter>
void GetColumnSizesScan(int device, size_t num_columns, size_t num_cuts_per_feature,
Iter batch_iter, data::IsValidFunctor is_valid,
size_t begin, size_t end,
HostDeviceVector<SketchContainer::OffsetT> *cuts_ptr,
dh::caching_device_vector<size_t>* column_sizes_scan) {
column_sizes_scan->resize(num_columns + 1, 0);
cuts_ptr->SetDevice(device);
cuts_ptr->Resize(num_columns + 1, 0);
dh::XGBCachingDeviceAllocator<char> alloc;
auto d_column_sizes_scan = column_sizes_scan->data().get();
dh::LaunchN(device, end - begin, [=] __device__(size_t idx) {
auto e = batch_iter[begin + idx];
if (is_valid(e)) {
atomicAdd(&d_column_sizes_scan[e.column_idx], static_cast<size_t>(1));
}
});
// Calculate cuts CSC pointer
auto cut_ptr_it = dh::MakeTransformIterator<size_t>(
column_sizes_scan->begin(), [=] __device__(size_t column_size) {
return thrust::min(num_cuts_per_feature, column_size);
});
thrust::exclusive_scan(thrust::cuda::par(alloc), cut_ptr_it,
cut_ptr_it + column_sizes_scan->size(),
cuts_ptr->DevicePointer());
thrust::exclusive_scan(thrust::cuda::par(alloc), column_sizes_scan->begin(),
column_sizes_scan->end(), column_sizes_scan->begin());
}
inline size_t constexpr BytesPerElement(bool has_weight) {
// Double the memory usage for sorting. We need to assign weight for each element, so
// sizeof(float) is added to all elements.
return (has_weight ? sizeof(Entry) + sizeof(float) : sizeof(Entry)) * 2;
}
/* \brief Calcuate the length of sliding window. Returns `sketch_batch_num_elements`
* directly if it's not 0.
*/
size_t SketchBatchNumElements(size_t sketch_batch_num_elements,
bst_row_t num_rows, bst_feature_t columns,
size_t nnz, int device,
size_t num_cuts, bool has_weight);
// Compute number of sample cuts needed on local node to maintain accuracy
// We take more cuts than needed and then reduce them later
size_t RequiredSampleCutsPerColumn(int max_bins, size_t num_rows);
/* \brief Estimate required memory for each sliding window.
*
* It's not precise as to obtain exact memory usage for sparse dataset we need to walk
* through the whole dataset first. Also if data is from host DMatrix, we copy the
* weight, group and offset on first batch, which is not considered in the function.
*
* \param num_rows Number of rows in this worker.
* \param num_columns Number of columns for this dataset.
* \param nnz Number of non-zero element. Put in something greater than rows *
* cols if nnz is unknown.
* \param num_bins Number of histogram bins.
* \param with_weights Whether weight is used, works the same for ranking and other models.
*
* \return The estimated bytes
*/
size_t RequiredMemory(bst_row_t num_rows, bst_feature_t num_columns, size_t nnz,
size_t num_bins, bool with_weights);
// Count the valid entries in each column and copy them out.
template <typename AdapterBatch, typename BatchIter>
void MakeEntriesFromAdapter(AdapterBatch const& batch, BatchIter batch_iter,
Range1d range, float missing,
size_t columns, size_t cuts_per_feature, int device,
HostDeviceVector<SketchContainer::OffsetT>* cut_sizes_scan,
dh::caching_device_vector<size_t>* column_sizes_scan,
dh::device_vector<Entry>* sorted_entries) {
auto entry_iter = dh::MakeTransformIterator<Entry>(
thrust::make_counting_iterator(0llu), [=] __device__(size_t idx) {
return Entry(batch.GetElement(idx).column_idx,
batch.GetElement(idx).value);
});
data::IsValidFunctor is_valid(missing);
// Work out how many valid entries we have in each column
GetColumnSizesScan(device, columns, cuts_per_feature,
batch_iter, is_valid,
range.begin(), range.end(),
cut_sizes_scan,
column_sizes_scan);
size_t num_valid = column_sizes_scan->back();
// Copy current subset of valid elements into temporary storage and sort
sorted_entries->resize(num_valid);
dh::CopyIf(entry_iter + range.begin(), entry_iter + range.end(),
sorted_entries->begin(), is_valid);
}
void SortByWeight(dh::device_vector<float>* weights,
dh::device_vector<Entry>* sorted_entries);
} // namespace detail
// Compute sketch on DMatrix.
// sketch_batch_num_elements 0 means autodetect. Only modify this for testing.
HistogramCuts DeviceSketch(int device, DMatrix* dmat, int max_bins,
size_t sketch_batch_num_elements = 0);
template <typename AdapterBatch>
void ProcessSlidingWindow(AdapterBatch const& batch, int device, size_t columns,
size_t begin, size_t end, float missing,
SketchContainer* sketch_container, int num_cuts) {
// Copy current subset of valid elements into temporary storage and sort
dh::device_vector<Entry> sorted_entries;
dh::caching_device_vector<size_t> column_sizes_scan;
auto batch_iter = dh::MakeTransformIterator<data::COOTuple>(
thrust::make_counting_iterator(0llu),
[=] __device__(size_t idx) { return batch.GetElement(idx); });
HostDeviceVector<SketchContainer::OffsetT> cuts_ptr;
detail::MakeEntriesFromAdapter(batch, batch_iter, {begin, end}, missing,
columns, num_cuts, device,
&cuts_ptr,
&column_sizes_scan,
&sorted_entries);
dh::XGBDeviceAllocator<char> alloc;
thrust::sort(thrust::cuda::par(alloc), sorted_entries.begin(),
sorted_entries.end(), detail::EntryCompareOp());
auto const& h_cuts_ptr = cuts_ptr.ConstHostVector();
auto d_cuts_ptr = cuts_ptr.DeviceSpan();
// Extract the cuts from all columns concurrently
sketch_container->Push(dh::ToSpan(sorted_entries),
dh::ToSpan(column_sizes_scan), d_cuts_ptr,
h_cuts_ptr.back());
sorted_entries.clear();
sorted_entries.shrink_to_fit();
}
template <typename Batch>
void ProcessWeightedSlidingWindow(Batch batch, MetaInfo const& info,
int num_cuts_per_feature,
bool is_ranking, float missing, int device,
size_t columns, size_t begin, size_t end,
SketchContainer *sketch_container) {
dh::XGBCachingDeviceAllocator<char> alloc;
dh::safe_cuda(cudaSetDevice(device));
info.weights_.SetDevice(device);
auto weights = info.weights_.ConstDeviceSpan();
dh::caching_device_vector<bst_group_t> group_ptr(info.group_ptr_);
auto d_group_ptr = dh::ToSpan(group_ptr);
auto batch_iter = dh::MakeTransformIterator<data::COOTuple>(
thrust::make_counting_iterator(0llu),
[=] __device__(size_t idx) { return batch.GetElement(idx); });
dh::device_vector<Entry> sorted_entries;
dh::caching_device_vector<size_t> column_sizes_scan;
HostDeviceVector<SketchContainer::OffsetT> cuts_ptr;
detail::MakeEntriesFromAdapter(batch, batch_iter,
{begin, end}, missing,
columns, num_cuts_per_feature, device,
&cuts_ptr,
&column_sizes_scan,
&sorted_entries);
data::IsValidFunctor is_valid(missing);
dh::device_vector<float> temp_weights(sorted_entries.size());
auto d_temp_weights = dh::ToSpan(temp_weights);
if (is_ranking) {
auto const weight_iter = dh::MakeTransformIterator<float>(
thrust::make_constant_iterator(0lu),
[=]__device__(size_t idx) -> float {
auto ridx = batch.GetElement(idx).row_idx;
bst_group_t group_idx = dh::SegmentId(d_group_ptr, ridx);
return weights[group_idx];
});
auto retit = thrust::copy_if(thrust::cuda::par(alloc),
weight_iter + begin, weight_iter + end,
batch_iter + begin,
d_temp_weights.data(), // output
is_valid);
CHECK_EQ(retit - d_temp_weights.data(), d_temp_weights.size());
} else {
CHECK_EQ(batch.NumRows(), weights.size());
auto const weight_iter = dh::MakeTransformIterator<float>(
thrust::make_counting_iterator(0lu),
[=]__device__(size_t idx) -> float {
return weights[batch.GetElement(idx).row_idx];
});
auto retit = thrust::copy_if(thrust::cuda::par(alloc),
weight_iter + begin, weight_iter + end,
batch_iter + begin,
d_temp_weights.data(), // output
is_valid);
CHECK_EQ(retit - d_temp_weights.data(), d_temp_weights.size());
}
detail::SortByWeight(&temp_weights, &sorted_entries);
auto const& h_cuts_ptr = cuts_ptr.ConstHostVector();
auto d_cuts_ptr = cuts_ptr.DeviceSpan();
// Extract cuts
sketch_container->Push(dh::ToSpan(sorted_entries),
dh::ToSpan(column_sizes_scan), d_cuts_ptr,
h_cuts_ptr.back(), dh::ToSpan(temp_weights));
sorted_entries.clear();
sorted_entries.shrink_to_fit();
}
/*
* \brief Perform sketching on GPU.
*
* \param batch A batch from adapter.
* \param num_bins Bins per column.
* \param info Metainfo used for sketching.
* \param missing Floating point value that represents invalid value.
* \param sketch_container Container for output sketch.
* \param sketch_batch_num_elements Number of element per-sliding window, use it only for
* testing.
*/
template <typename Batch>
void AdapterDeviceSketch(Batch batch, int num_bins,
MetaInfo const& info,
float missing, SketchContainer* sketch_container,
size_t sketch_batch_num_elements = 0) {
size_t num_rows = batch.NumRows();
size_t num_cols = batch.NumCols();
size_t num_cuts_per_feature = detail::RequiredSampleCutsPerColumn(num_bins, num_rows);
int32_t device = sketch_container->DeviceIdx();
bool weighted = info.weights_.Size() != 0;
if (weighted) {
sketch_batch_num_elements = detail::SketchBatchNumElements(
sketch_batch_num_elements,
num_rows, num_cols, std::numeric_limits<size_t>::max(),
device, num_cuts_per_feature, true);
for (auto begin = 0ull; begin < batch.Size(); begin += sketch_batch_num_elements) {
size_t end = std::min(batch.Size(), size_t(begin + sketch_batch_num_elements));
ProcessWeightedSlidingWindow(batch, info,
num_cuts_per_feature,
HostSketchContainer::UseGroup(info), missing, device, num_cols, begin, end,
sketch_container);
}
} else {
sketch_batch_num_elements = detail::SketchBatchNumElements(
sketch_batch_num_elements,
num_rows, num_cols, std::numeric_limits<size_t>::max(),
device, num_cuts_per_feature, false);
for (auto begin = 0ull; begin < batch.Size(); begin += sketch_batch_num_elements) {
size_t end = std::min(batch.Size(), size_t(begin + sketch_batch_num_elements));
ProcessSlidingWindow(batch, device, num_cols,
begin, end, missing, sketch_container, num_cuts_per_feature);
}
}
}
} // namespace common
} // namespace xgboost
#endif // COMMON_HIST_UTIL_CUH_