xgboost/src/common/hist_util.cu
trivialfis 5a7f7e7d49 Implement devices to devices reshard. (#3721)
* Force clearing device memory before Reshard.
* Remove calculating row_segments for gpu_hist and gpu_sketch.
* Guard against changing device.
2018-09-28 17:40:23 +12:00

400 lines
15 KiB
Plaintext

/*!
* Copyright 2018 XGBoost contributors
*/
#include "./hist_util.h"
#include <thrust/copy.h>
#include <thrust/functional.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/reduce.h>
#include <thrust/sequence.h>
#include <utility>
#include <vector>
#include "../tree/param.h"
#include "./host_device_vector.h"
#include "./device_helpers.cuh"
#include "./quantile.h"
namespace xgboost {
namespace common {
using WXQSketch = HistCutMatrix::WXQSketch;
__global__ void find_cuts_k
(WXQSketch::Entry* __restrict__ cuts, const bst_float* __restrict__ data,
const float* __restrict__ cum_weights, int nsamples, int ncuts) {
// ncuts < nsamples
int icut = threadIdx.x + blockIdx.x * blockDim.x;
if (icut >= ncuts)
return;
WXQSketch::Entry v;
int isample = 0;
if (icut == 0) {
isample = 0;
} else if (icut == ncuts - 1) {
isample = nsamples - 1;
} else {
bst_float rank = cum_weights[nsamples - 1] / static_cast<float>(ncuts - 1)
* static_cast<float>(icut);
// -1 is used because cum_weights is an inclusive sum
isample = dh::UpperBound(cum_weights, nsamples, rank);
isample = max(0, min(isample, nsamples - 1));
}
// repeated values will be filtered out on the CPU
bst_float rmin = isample > 0 ? cum_weights[isample - 1] : 0;
bst_float rmax = cum_weights[isample];
cuts[icut] = WXQSketch::Entry(rmin, rmax, rmax - rmin, data[isample]);
}
// predictate for thrust filtering that returns true if the element is not a NaN
struct IsNotNaN {
__device__ bool operator()(float a) const { return !isnan(a); }
};
__global__ void unpack_features_k
(float* __restrict__ fvalues, float* __restrict__ feature_weights,
const size_t* __restrict__ row_ptrs, const float* __restrict__ weights,
Entry* entries, size_t nrows_array, int ncols, size_t row_begin_ptr,
size_t nrows) {
size_t irow = threadIdx.x + size_t(blockIdx.x) * blockDim.x;
if (irow >= nrows) {
return;
}
size_t row_length = row_ptrs[irow + 1] - row_ptrs[irow];
int icol = threadIdx.y + blockIdx.y * blockDim.y;
if (icol >= row_length) {
return;
}
Entry entry = entries[row_ptrs[irow] - row_begin_ptr + icol];
size_t ind = entry.index * nrows_array + irow;
// if weights are present, ensure that a non-NaN value is written to weights
// if and only if it is also written to features
if (!isnan(entry.fvalue) && (weights == nullptr || !isnan(weights[irow]))) {
fvalues[ind] = entry.fvalue;
if (feature_weights != nullptr) {
feature_weights[ind] = weights[irow];
}
}
}
// finds quantiles on the GPU
struct GPUSketcher {
// manage memory for a single GPU
struct DeviceShard {
int device_;
bst_uint row_begin_; // The row offset for this shard
bst_uint row_end_;
bst_uint n_rows_;
int num_cols_{0};
size_t n_cuts_{0};
size_t gpu_batch_nrows_{0};
bool has_weights_{false};
tree::TrainParam param_;
std::vector<WXQSketch> sketches_;
thrust::device_vector<size_t> row_ptrs_;
std::vector<WXQSketch::SummaryContainer> summaries_;
thrust::device_vector<Entry> entries_;
thrust::device_vector<bst_float> fvalues_;
thrust::device_vector<bst_float> feature_weights_;
thrust::device_vector<bst_float> fvalues_cur_;
thrust::device_vector<WXQSketch::Entry> cuts_d_;
thrust::host_vector<WXQSketch::Entry> cuts_h_;
thrust::device_vector<bst_float> weights_;
thrust::device_vector<bst_float> weights2_;
std::vector<size_t> n_cuts_cur_;
thrust::device_vector<size_t> num_elements_;
thrust::device_vector<char> tmp_storage_;
DeviceShard(int device, bst_uint row_begin, bst_uint row_end,
tree::TrainParam param) :
device_(device), row_begin_(row_begin), row_end_(row_end),
n_rows_(row_end - row_begin), param_(std::move(param)) {
}
void Init(const SparsePage& row_batch, const MetaInfo& info) {
num_cols_ = info.num_col_;
has_weights_ = info.weights_.Size() > 0;
// find the batch size
if (param_.gpu_batch_nrows == 0) {
// By default, use no more than 1/16th of GPU memory
gpu_batch_nrows_ = dh::TotalMemory(device_) /
(16 * num_cols_ * sizeof(Entry));
} else if (param_.gpu_batch_nrows == -1) {
gpu_batch_nrows_ = n_rows_;
} else {
gpu_batch_nrows_ = param_.gpu_batch_nrows;
}
if (gpu_batch_nrows_ > n_rows_) {
gpu_batch_nrows_ = n_rows_;
}
// initialize sketches
sketches_.resize(num_cols_);
summaries_.resize(num_cols_);
constexpr int kFactor = 8;
double eps = 1.0 / (kFactor * param_.max_bin);
size_t dummy_nlevel;
WXQSketch::LimitSizeLevel(row_batch.Size(), eps, &dummy_nlevel, &n_cuts_);
// double ncuts to be the same as the number of values
// in the temporary buffers of the sketches
n_cuts_ *= 2;
for (int icol = 0; icol < num_cols_; ++icol) {
sketches_[icol].Init(row_batch.Size(), eps);
summaries_[icol].Reserve(n_cuts_);
}
// allocate necessary GPU buffers
dh::safe_cuda(cudaSetDevice(device_));
entries_.resize(gpu_batch_nrows_ * num_cols_);
fvalues_.resize(gpu_batch_nrows_ * num_cols_);
fvalues_cur_.resize(gpu_batch_nrows_);
cuts_d_.resize(n_cuts_ * num_cols_);
cuts_h_.resize(n_cuts_ * num_cols_);
weights_.resize(gpu_batch_nrows_);
weights2_.resize(gpu_batch_nrows_);
num_elements_.resize(1);
if (has_weights_) {
feature_weights_.resize(gpu_batch_nrows_ * num_cols_);
}
n_cuts_cur_.resize(num_cols_);
// allocate storage for CUB algorithms; the size is the maximum of the sizes
// required for various algorithm
size_t tmp_size = 0, cur_tmp_size = 0;
// size for sorting
if (has_weights_) {
cub::DeviceRadixSort::SortPairs
(nullptr, cur_tmp_size, fvalues_cur_.data().get(),
fvalues_.data().get(), weights_.data().get(), weights2_.data().get(),
gpu_batch_nrows_);
} else {
cub::DeviceRadixSort::SortKeys
(nullptr, cur_tmp_size, fvalues_cur_.data().get(), fvalues_.data().get(),
gpu_batch_nrows_);
}
tmp_size = std::max(tmp_size, cur_tmp_size);
// size for inclusive scan
if (has_weights_) {
cub::DeviceScan::InclusiveSum
(nullptr, cur_tmp_size, weights2_.begin(), weights_.begin(), gpu_batch_nrows_);
tmp_size = std::max(tmp_size, cur_tmp_size);
}
// size for reduction by key
cub::DeviceReduce::ReduceByKey
(nullptr, cur_tmp_size, fvalues_.begin(),
fvalues_cur_.begin(), weights_.begin(), weights2_.begin(),
num_elements_.begin(), thrust::maximum<bst_float>(), gpu_batch_nrows_);
tmp_size = std::max(tmp_size, cur_tmp_size);
// size for filtering
cub::DeviceSelect::If
(nullptr, cur_tmp_size, fvalues_.begin(), fvalues_cur_.begin(),
num_elements_.begin(), gpu_batch_nrows_, IsNotNaN());
tmp_size = std::max(tmp_size, cur_tmp_size);
tmp_storage_.resize(tmp_size);
}
void FindColumnCuts(size_t batch_nrows, size_t icol) {
size_t tmp_size = tmp_storage_.size();
// filter out NaNs in feature values
auto fvalues_begin = fvalues_.data() + icol * gpu_batch_nrows_;
cub::DeviceSelect::If
(tmp_storage_.data().get(), tmp_size, fvalues_begin,
fvalues_cur_.data(), num_elements_.begin(), batch_nrows, IsNotNaN());
size_t nfvalues_cur = 0;
thrust::copy_n(num_elements_.begin(), 1, &nfvalues_cur);
// compute cumulative weights using a prefix scan
if (has_weights_) {
// filter out NaNs in weights;
// since cub::DeviceSelect::If performs stable filtering,
// the weights are stored in the correct positions
auto feature_weights_begin = feature_weights_.data() +
icol * gpu_batch_nrows_;
cub::DeviceSelect::If
(tmp_storage_.data().get(), tmp_size, feature_weights_begin,
weights_.data().get(), num_elements_.begin(), batch_nrows, IsNotNaN());
// sort the values and weights
cub::DeviceRadixSort::SortPairs
(tmp_storage_.data().get(), tmp_size, fvalues_cur_.data().get(),
fvalues_begin.get(), weights_.data().get(), weights2_.data().get(),
nfvalues_cur);
// sum the weights to get cumulative weight values
cub::DeviceScan::InclusiveSum
(tmp_storage_.data().get(), tmp_size, weights2_.begin(),
weights_.begin(), nfvalues_cur);
} else {
// sort the batch values
cub::DeviceRadixSort::SortKeys
(tmp_storage_.data().get(), tmp_size,
fvalues_cur_.data().get(), fvalues_begin.get(), nfvalues_cur);
// fill in cumulative weights with counting iterator
thrust::copy_n(thrust::make_counting_iterator(1), nfvalues_cur,
weights_.begin());
}
// remove repeated items and sum the weights across them;
// non-negative weights are assumed
cub::DeviceReduce::ReduceByKey
(tmp_storage_.data().get(), tmp_size, fvalues_begin,
fvalues_cur_.begin(), weights_.begin(), weights2_.begin(),
num_elements_.begin(), thrust::maximum<bst_float>(), nfvalues_cur);
size_t n_unique = 0;
thrust::copy_n(num_elements_.begin(), 1, &n_unique);
// extract cuts
n_cuts_cur_[icol] = std::min(n_cuts_, n_unique);
// if less elements than cuts: copy all elements with their weights
if (n_cuts_ > n_unique) {
float* weights2_ptr = weights2_.data().get();
float* fvalues_ptr = fvalues_cur_.data().get();
WXQSketch::Entry* cuts_ptr = cuts_d_.data().get() + icol * n_cuts_;
dh::LaunchN(device_, n_unique, [=]__device__(size_t i) {
bst_float rmax = weights2_ptr[i];
bst_float rmin = i > 0 ? weights2_ptr[i - 1] : 0;
cuts_ptr[i] = WXQSketch::Entry(rmin, rmax, rmax - rmin, fvalues_ptr[i]);
});
} else if (n_cuts_cur_[icol] > 0) {
// if more elements than cuts: use binary search on cumulative weights
int block = 256;
find_cuts_k<<<dh::DivRoundUp(n_cuts_cur_[icol], block), block>>>
(cuts_d_.data().get() + icol * n_cuts_, fvalues_cur_.data().get(),
weights2_.data().get(), n_unique, n_cuts_cur_[icol]);
dh::safe_cuda(cudaGetLastError()); // NOLINT
}
}
void SketchBatch(const SparsePage& row_batch, const MetaInfo& info,
size_t gpu_batch) {
// compute start and end indices
size_t batch_row_begin = gpu_batch * gpu_batch_nrows_;
size_t batch_row_end = std::min((gpu_batch + 1) * gpu_batch_nrows_,
static_cast<size_t>(n_rows_));
size_t batch_nrows = batch_row_end - batch_row_begin;
const auto& offset_vec = row_batch.offset.HostVector();
const auto& data_vec = row_batch.data.HostVector();
size_t n_entries = offset_vec[row_begin_ + batch_row_end] -
offset_vec[row_begin_ + batch_row_begin];
// copy the batch to the GPU
dh::safe_cuda
(cudaMemcpy(entries_.data().get(),
data_vec.data() + offset_vec[row_begin_ + batch_row_begin],
n_entries * sizeof(Entry), cudaMemcpyDefault));
// copy the weights if necessary
if (has_weights_) {
const auto& weights_vec = info.weights_.HostVector();
dh::safe_cuda
(cudaMemcpy(weights_.data().get(),
weights_vec.data() + row_begin_ + batch_row_begin,
batch_nrows * sizeof(bst_float), cudaMemcpyDefault));
}
// unpack the features; also unpack weights if present
thrust::fill(fvalues_.begin(), fvalues_.end(), NAN);
thrust::fill(feature_weights_.begin(), feature_weights_.end(), NAN);
dim3 block3(64, 4, 1);
dim3 grid3(dh::DivRoundUp(batch_nrows, block3.x),
dh::DivRoundUp(num_cols_, block3.y), 1);
unpack_features_k<<<grid3, block3>>>
(fvalues_.data().get(), has_weights_ ? feature_weights_.data().get() : nullptr,
row_ptrs_.data().get() + batch_row_begin,
has_weights_ ? weights_.data().get() : nullptr, entries_.data().get(),
gpu_batch_nrows_, num_cols_,
offset_vec[row_begin_ + batch_row_begin], batch_nrows);
dh::safe_cuda(cudaGetLastError()); // NOLINT
dh::safe_cuda(cudaDeviceSynchronize()); // NOLINT
for (int icol = 0; icol < num_cols_; ++icol) {
FindColumnCuts(batch_nrows, icol);
}
dh::safe_cuda(cudaDeviceSynchronize()); // NOLINT
// add cuts into sketches
thrust::copy(cuts_d_.begin(), cuts_d_.end(), cuts_h_.begin());
for (int icol = 0; icol < num_cols_; ++icol) {
summaries_[icol].MakeFromSorted(&cuts_h_[n_cuts_ * icol], n_cuts_cur_[icol]);
sketches_[icol].PushSummary(summaries_[icol]);
}
}
void Sketch(const SparsePage& row_batch, const MetaInfo& info) {
// copy rows to the device
dh::safe_cuda(cudaSetDevice(device_));
const auto& offset_vec = row_batch.offset.HostVector();
row_ptrs_.resize(n_rows_ + 1);
thrust::copy(offset_vec.data() + row_begin_,
offset_vec.data() + row_end_ + 1, row_ptrs_.begin());
size_t gpu_nbatches = dh::DivRoundUp(n_rows_, gpu_batch_nrows_);
for (size_t gpu_batch = 0; gpu_batch < gpu_nbatches; ++gpu_batch) {
SketchBatch(row_batch, info, gpu_batch);
}
}
};
void Sketch(const SparsePage& batch, const MetaInfo& info, HistCutMatrix* hmat) {
// create device shards
shards_.resize(dist_.Devices().Size());
dh::ExecuteIndexShards(&shards_, [&](int i, std::unique_ptr<DeviceShard>& shard) {
size_t start = dist_.ShardStart(info.num_row_, i);
size_t size = dist_.ShardSize(info.num_row_, i);
shard = std::unique_ptr<DeviceShard>
(new DeviceShard(dist_.Devices()[i], start, start + size, param_));
});
// compute sketches for each shard
dh::ExecuteShards(&shards_, [&](std::unique_ptr<DeviceShard>& shard) {
shard->Init(batch, info);
shard->Sketch(batch, info);
});
// merge the sketches from all shards
// TODO(canonizer): do it in a tree-like reduction
int num_cols = info.num_col_;
std::vector<WXQSketch> sketches(num_cols);
WXQSketch::SummaryContainer summary;
for (int icol = 0; icol < num_cols; ++icol) {
sketches[icol].Init(batch.Size(), 1.0 / (8 * param_.max_bin));
for (int shard = 0; shard < shards_.size(); ++shard) {
shards_[shard]->sketches_[icol].GetSummary(&summary);
sketches[icol].PushSummary(summary);
}
}
hmat->Init(&sketches, param_.max_bin);
}
GPUSketcher(tree::TrainParam param, size_t n_rows) : param_(std::move(param)) {
dist_ = GPUDistribution::Block(GPUSet::All(param_.n_gpus, n_rows).
Normalised(param_.gpu_id));
}
std::vector<std::unique_ptr<DeviceShard>> shards_;
tree::TrainParam param_;
GPUDistribution dist_;
};
void DeviceSketch
(const SparsePage& batch, const MetaInfo& info,
const tree::TrainParam& param, HistCutMatrix* hmat) {
GPUSketcher sketcher(param, info.num_row_);
sketcher.Sketch(batch, info, hmat);
}
} // namespace common
} // namespace xgboost