This PR replaces the original RABIT implementation with a new one, which has already been partially merged into XGBoost. The new one features: - Federated learning for both CPU and GPU. - NCCL. - More data types. - A unified interface for all the underlying implementations. - Improved timeout handling for both tracker and workers. - Exhausted tests with metrics (fixed a couple of bugs along the way). - A reusable tracker for Python and JVM packages.
163 lines
5.9 KiB
C++
163 lines
5.9 KiB
C++
/**
|
|
* Copyright 2022-2024, XGBoost Contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/base.h> // for GradientPairInternal, GradientPairPrecise
|
|
#include <xgboost/data.h> // for MetaInfo
|
|
#include <xgboost/host_device_vector.h> // for HostDeviceVector
|
|
#include <xgboost/span.h> // for operator!=, Span, SpanIterator
|
|
|
|
#include <algorithm> // for max, max_element, next_permutation, copy
|
|
#include <cmath> // for isnan
|
|
#include <cstddef> // for size_t
|
|
#include <cstdint> // for int32_t, uint64_t, uint32_t
|
|
#include <limits> // for numeric_limits
|
|
#include <numeric> // for iota
|
|
#include <tuple> // for make_tuple, tie, tuple
|
|
#include <vector> // for vector
|
|
|
|
#include "../../../src/common/hist_util.h" // for HistogramCuts, HistCollection, GHistRow
|
|
#include "../../../src/tree/hist/hist_cache.h" // for HistogramCollection
|
|
#include "../../../src/tree/hist/param.h" // for HistMakerTrainParam
|
|
#include "../../../src/tree/param.h" // for TrainParam, GradStats
|
|
#include "../../../src/tree/split_evaluator.h" // for TreeEvaluator
|
|
#include "../helpers.h" // for SimpleLCG, SimpleRealUniformDistribution
|
|
|
|
namespace xgboost::tree {
|
|
/**
|
|
* \brief Enumerate all possible partitions for categorical split.
|
|
*/
|
|
class TestPartitionBasedSplit : public ::testing::Test {
|
|
protected:
|
|
size_t n_bins_ = 6;
|
|
std::vector<size_t> sorted_idx_;
|
|
TrainParam param_;
|
|
MetaInfo info_;
|
|
float best_score_{-std::numeric_limits<float>::infinity()};
|
|
common::HistogramCuts cuts_;
|
|
BoundedHistCollection hist_;
|
|
GradientPairPrecise total_gpair_;
|
|
|
|
void SetUp() override {
|
|
param_.UpdateAllowUnknown(Args{{"min_child_weight", "0"}, {"reg_lambda", "0"}});
|
|
sorted_idx_.resize(n_bins_);
|
|
std::iota(sorted_idx_.begin(), sorted_idx_.end(), 0);
|
|
|
|
info_.num_col_ = 1;
|
|
|
|
cuts_.cut_ptrs_.Resize(2);
|
|
cuts_.SetCategorical(true, n_bins_);
|
|
auto &h_cuts = cuts_.cut_ptrs_.HostVector();
|
|
h_cuts[0] = 0;
|
|
h_cuts[1] = n_bins_;
|
|
auto &h_vals = cuts_.cut_values_.HostVector();
|
|
h_vals.resize(n_bins_);
|
|
std::iota(h_vals.begin(), h_vals.end(), 0.0);
|
|
|
|
cuts_.min_vals_.Resize(1);
|
|
|
|
HistMakerTrainParam hist_param;
|
|
hist_.Reset(cuts_.TotalBins(), hist_param.max_cached_hist_node);
|
|
hist_.AllocateHistograms({0});
|
|
auto node_hist = hist_[0];
|
|
|
|
SimpleLCG lcg;
|
|
SimpleRealUniformDistribution<double> grad_dist{-4.0, 4.0};
|
|
SimpleRealUniformDistribution<double> hess_dist{0.0, 4.0};
|
|
|
|
for (auto &e : node_hist) {
|
|
e = GradientPairPrecise{grad_dist(&lcg), hess_dist(&lcg)};
|
|
total_gpair_ += e;
|
|
}
|
|
|
|
auto enumerate = [this, n_feat = info_.num_col_](common::GHistRow hist,
|
|
GradientPairPrecise parent_sum) {
|
|
int32_t best_thresh = -1;
|
|
float best_score{-std::numeric_limits<float>::infinity()};
|
|
TreeEvaluator evaluator{param_, static_cast<bst_feature_t>(n_feat), DeviceOrd::CPU()};
|
|
auto tree_evaluator = evaluator.GetEvaluator<TrainParam>();
|
|
GradientPairPrecise left_sum;
|
|
auto parent_gain = tree_evaluator.CalcGain(0, param_, GradStats{total_gpair_});
|
|
for (size_t i = 0; i < hist.size() - 1; ++i) {
|
|
left_sum += hist[i];
|
|
auto right_sum = parent_sum - left_sum;
|
|
auto gain =
|
|
tree_evaluator.CalcSplitGain(param_, 0, 0, GradStats{left_sum}, GradStats{right_sum}) -
|
|
parent_gain;
|
|
if (gain > best_score) {
|
|
best_score = gain;
|
|
best_thresh = i;
|
|
}
|
|
}
|
|
return std::make_tuple(best_thresh, best_score);
|
|
};
|
|
|
|
// enumerate all possible partitions to find the optimal split
|
|
do {
|
|
std::vector<GradientPairPrecise> sorted_hist(node_hist.size());
|
|
for (size_t i = 0; i < sorted_hist.size(); ++i) {
|
|
sorted_hist[i] = node_hist[sorted_idx_[i]];
|
|
}
|
|
auto [thresh, score] = enumerate({sorted_hist}, total_gpair_);
|
|
if (score > best_score_) {
|
|
best_score_ = score;
|
|
}
|
|
} while (std::next_permutation(sorted_idx_.begin(), sorted_idx_.end()));
|
|
}
|
|
};
|
|
|
|
inline auto MakeCutsForTest(std::vector<float> values, std::vector<uint32_t> ptrs,
|
|
std::vector<float> min_values, DeviceOrd device) {
|
|
common::HistogramCuts cuts;
|
|
cuts.cut_values_.HostVector() = values;
|
|
cuts.cut_ptrs_.HostVector() = ptrs;
|
|
cuts.min_vals_.HostVector() = min_values;
|
|
|
|
if (device.IsCUDA()) {
|
|
cuts.cut_ptrs_.SetDevice(device);
|
|
cuts.cut_values_.SetDevice(device);
|
|
cuts.min_vals_.SetDevice(device);
|
|
}
|
|
|
|
return cuts;
|
|
}
|
|
|
|
class TestCategoricalSplitWithMissing : public testing::Test {
|
|
protected:
|
|
common::HistogramCuts cuts_;
|
|
// Setup gradients and parent sum with missing values.
|
|
GradientPairPrecise parent_sum_{1.0, 6.0};
|
|
std::vector<GradientPairPrecise> feature_histogram_{
|
|
{0.5, 0.5}, {0.5, 0.5}, {1.0, 1.0}, {1.0, 1.0}};
|
|
TrainParam param_;
|
|
|
|
void SetUp() override {
|
|
cuts_ = MakeCutsForTest({0.0, 1.0, 2.0, 3.0}, {0, 4}, {0.0}, DeviceOrd::CPU());
|
|
auto max_cat = *std::max_element(cuts_.cut_values_.HostVector().begin(),
|
|
cuts_.cut_values_.HostVector().end());
|
|
cuts_.SetCategorical(true, max_cat);
|
|
param_.UpdateAllowUnknown(
|
|
Args{{"min_child_weight", "0"}, {"reg_lambda", "0"}, {"max_cat_to_onehot", "1"}});
|
|
}
|
|
|
|
void CheckResult(float loss_chg, bst_feature_t split_ind, float fvalue, bool is_cat,
|
|
bool dft_left, GradientPairPrecise left_sum, GradientPairPrecise right_sum) {
|
|
// forward
|
|
// it: 0, gain: 0.545455
|
|
// it: 1, gain: 1.000000
|
|
// it: 2, gain: 2.250000
|
|
// backward
|
|
// it: 3, gain: 1.000000
|
|
// it: 2, gain: 2.250000
|
|
// it: 1, gain: 3.142857
|
|
ASSERT_NEAR(loss_chg, 2.97619, kRtEps);
|
|
ASSERT_TRUE(is_cat);
|
|
ASSERT_TRUE(std::isnan(fvalue));
|
|
ASSERT_EQ(split_ind, 0);
|
|
ASSERT_FALSE(dft_left);
|
|
ASSERT_EQ(left_sum.GetHess(), 2.5);
|
|
ASSERT_EQ(right_sum.GetHess(), parent_sum_.GetHess() - left_sum.GetHess());
|
|
}
|
|
};
|
|
} // namespace xgboost::tree
|