xgboost/src/tree/gpu_hist/gradient_based_sampler.cu
Jiaming Yuan 4fe67f10b4
[EM] Have one partitioner for each batch. (#10760)
- Initialize one partitioner for each batch.
- Collect partition size during initialization.
- Support base ridx in the finalization.
2024-08-29 01:35:17 +08:00

408 lines
17 KiB
Plaintext

/**
* Copyright 2019-2024, XGBoost Contributors
*/
#include <thrust/functional.h>
#include <thrust/random.h>
#include <thrust/sort.h> // for sort
#include <thrust/transform.h>
#include <xgboost/host_device_vector.h>
#include <xgboost/logging.h>
#include <cstddef> // for size_t
#include <limits>
#include <utility>
#include "../../common/cuda_context.cuh" // for CUDAContext
#include "../../common/random.h"
#include "../../data/ellpack_page.cuh" // for EllpackPageImpl
#include "../../data/iterative_dmatrix.h" // for IterativeDMatrix
#include "../param.h"
#include "gradient_based_sampler.cuh"
namespace xgboost::tree {
/*! \brief A functor that returns random weights. */
class RandomWeight : public thrust::unary_function<size_t, float> {
public:
explicit RandomWeight(size_t seed) : seed_(seed) {}
XGBOOST_DEVICE float operator()(size_t i) const {
thrust::default_random_engine rng(seed_);
thrust::uniform_real_distribution<float> dist;
rng.discard(i);
return dist(rng);
}
private:
uint32_t seed_;
};
/*! \brief A functor that performs a Bernoulli trial to discard a gradient pair. */
class BernoulliTrial : public thrust::unary_function<size_t, bool> {
public:
BernoulliTrial(size_t seed, float p) : rnd_(seed), p_(p) {}
XGBOOST_DEVICE bool operator()(size_t i) const {
return rnd_(i) > p_;
}
private:
RandomWeight rnd_;
float p_;
};
/*! \brief A functor that returns true if the gradient pair is non-zero. */
struct IsNonZero : public thrust::unary_function<GradientPair, bool> {
XGBOOST_DEVICE bool operator()(const GradientPair& gpair) const {
return gpair.GetGrad() != 0 || gpair.GetHess() != 0;
}
};
/*! \brief A functor that clears the row indexes with empty gradient. */
struct ClearEmptyRows : public thrust::binary_function<GradientPair, bst_idx_t, bst_idx_t> {
static constexpr bst_idx_t InvalidRow() { return std::numeric_limits<std::size_t>::max(); }
XGBOOST_DEVICE size_t operator()(const GradientPair& gpair, size_t row_index) const {
if (gpair.GetGrad() != 0 || gpair.GetHess() != 0) {
return row_index;
} else {
return InvalidRow();
}
}
};
/*! \brief A functor that combines the gradient pair into a single float.
*
* The approach here is based on Minimal Variance Sampling (MVS), with lambda set to 0.1.
*
* \see Ibragimov, B., & Gusev, G. (2019). Minimal Variance Sampling in Stochastic Gradient
* Boosting. In Advances in Neural Information Processing Systems (pp. 15061-15071).
*/
class CombineGradientPair : public thrust::unary_function<GradientPair, float> {
public:
XGBOOST_DEVICE float operator()(const GradientPair& gpair) const {
return sqrtf(powf(gpair.GetGrad(), 2) + kLambda * powf(gpair.GetHess(), 2));
}
private:
static constexpr float kLambda = 0.1f;
};
/*! \brief A functor that calculates the difference between the sample rate and the desired sample
* rows, given a cumulative gradient sum.
*/
class SampleRateDelta : public thrust::binary_function<float, size_t, float> {
public:
SampleRateDelta(common::Span<float> threshold, size_t n_rows, size_t sample_rows)
: threshold_(threshold), n_rows_(n_rows), sample_rows_(sample_rows) {}
XGBOOST_DEVICE float operator()(float gradient_sum, size_t row_index) const {
float lower = threshold_[row_index];
float upper = threshold_[row_index + 1];
float u = gradient_sum / static_cast<float>(sample_rows_ - n_rows_ + row_index + 1);
if (u > lower && u <= upper) {
threshold_[row_index + 1] = u;
return 0.0f;
} else {
return std::numeric_limits<float>::max();
}
}
private:
common::Span<float> threshold_;
size_t n_rows_;
size_t sample_rows_;
};
/*! \brief A functor that performs Poisson sampling, and scales gradient pairs by 1/p_i. */
class PoissonSampling : public thrust::binary_function<GradientPair, size_t, GradientPair> {
public:
PoissonSampling(common::Span<float> threshold, size_t threshold_index, RandomWeight rnd)
: threshold_(threshold), threshold_index_(threshold_index), rnd_(rnd) {}
XGBOOST_DEVICE GradientPair operator()(const GradientPair& gpair, size_t i) {
// If the gradient and hessian are both empty, we should never select this row.
if (gpair.GetGrad() == 0 && gpair.GetHess() == 0) {
return gpair;
}
float combined_gradient = combine_(gpair);
float u = threshold_[threshold_index_];
float p = combined_gradient / u;
if (p >= 1) {
// Always select this row.
return gpair;
} else {
// Select this row randomly with probability proportional to the combined gradient.
// Scale gpair by 1/p.
if (rnd_(i) <= p) {
return gpair / p;
} else {
return {};
}
}
}
private:
common::Span<float> threshold_;
size_t threshold_index_;
RandomWeight rnd_;
CombineGradientPair combine_;
};
NoSampling::NoSampling(BatchParam batch_param) : batch_param_(std::move(batch_param)) {}
GradientBasedSample NoSampling::Sample(Context const*, common::Span<GradientPair> gpair,
DMatrix* dmat) {
return {dmat, gpair};
}
ExternalMemoryNoSampling::ExternalMemoryNoSampling(BatchParam batch_param)
: batch_param_{std::move(batch_param)} {}
GradientBasedSample ExternalMemoryNoSampling::Sample(Context const* ctx,
common::Span<GradientPair> gpair,
DMatrix* p_fmat) {
std::shared_ptr<EllpackPage> new_page;
if (!page_concatenated_) {
// Concatenate all the external memory ELLPACK pages into a single in-memory page.
bst_idx_t offset = 0;
for (auto& batch : p_fmat->GetBatches<EllpackPage>(ctx, batch_param_)) {
auto page = batch.Impl();
if (!new_page) {
new_page = std::make_shared<EllpackPage>();
*new_page->Impl() = EllpackPageImpl(ctx, page->CutsShared(), page->is_dense,
page->row_stride, p_fmat->Info().num_row_);
}
bst_idx_t num_elements = new_page->Impl()->Copy(ctx, page, offset);
offset += num_elements;
}
page_concatenated_ = true;
this->p_fmat_new_ =
std::make_unique<data::IterativeDMatrix>(new_page, p_fmat->Info(), batch_param_);
}
return {this->p_fmat_new_.get(), gpair};
}
UniformSampling::UniformSampling(BatchParam batch_param, float subsample)
: batch_param_{std::move(batch_param)}, subsample_{subsample} {}
GradientBasedSample UniformSampling::Sample(Context const* ctx, common::Span<GradientPair> gpair,
DMatrix* p_fmat) {
// Set gradient pair to 0 with p = 1 - subsample
auto cuctx = ctx->CUDACtx();
thrust::replace_if(cuctx->CTP(), dh::tbegin(gpair), dh::tend(gpair),
thrust::counting_iterator<std::size_t>(0),
BernoulliTrial(common::GlobalRandom()(), subsample_), GradientPair());
return {p_fmat, gpair};
}
ExternalMemoryUniformSampling::ExternalMemoryUniformSampling(size_t n_rows,
BatchParam batch_param,
float subsample)
: batch_param_(std::move(batch_param)),
subsample_(subsample),
sample_row_index_(n_rows) {}
GradientBasedSample ExternalMemoryUniformSampling::Sample(Context const* ctx,
common::Span<GradientPair> gpair,
DMatrix* dmat) {
auto cuctx = ctx->CUDACtx();
std::shared_ptr<EllpackPage> new_page = std::make_shared<EllpackPage>();
auto page = new_page->Impl();
// Set gradient pair to 0 with p = 1 - subsample
thrust::replace_if(cuctx->CTP(), dh::tbegin(gpair), dh::tend(gpair),
thrust::counting_iterator<std::size_t>(0),
BernoulliTrial(common::GlobalRandom()(), subsample_), GradientPair{});
// Count the sampled rows.
bst_idx_t sample_rows =
thrust::count_if(cuctx->CTP(), dh::tbegin(gpair), dh::tend(gpair), IsNonZero{});
// Compact gradient pairs.
gpair_.resize(sample_rows);
thrust::copy_if(cuctx->CTP(), dh::tbegin(gpair), dh::tend(gpair), gpair_.begin(), IsNonZero{});
// Index the sample rows.
thrust::transform(cuctx->CTP(), dh::tbegin(gpair), dh::tend(gpair), sample_row_index_.begin(),
IsNonZero());
thrust::exclusive_scan(cuctx->CTP(), sample_row_index_.begin(), sample_row_index_.end(),
sample_row_index_.begin());
thrust::transform(cuctx->CTP(), dh::tbegin(gpair), dh::tend(gpair), sample_row_index_.begin(),
sample_row_index_.begin(), ClearEmptyRows());
auto batch_iterator = dmat->GetBatches<EllpackPage>(ctx, batch_param_);
auto first_page = (*batch_iterator.begin()).Impl();
// Create a new ELLPACK page with empty rows.
*page = EllpackPageImpl{ctx, first_page->CutsShared(), first_page->is_dense,
first_page->row_stride, sample_rows};
// Compact the ELLPACK pages into the single sample page.
thrust::fill(cuctx->CTP(), page->gidx_buffer.begin(), page->gidx_buffer.end(), 0);
for (auto& batch : batch_iterator) {
page->Compact(ctx, batch.Impl(), dh::ToSpan(sample_row_index_));
}
// Select the metainfo
dmat->Info().feature_types.SetDevice(ctx->Device());
auto nnz = page->NumNonMissing(ctx, dmat->Info().feature_types.ConstDeviceSpan());
compact_row_index_.resize(sample_rows);
thrust::copy_if(
cuctx->TP(), sample_row_index_.cbegin(), sample_row_index_.cend(), compact_row_index_.begin(),
[] XGBOOST_DEVICE(std::size_t idx) { return idx != ClearEmptyRows::InvalidRow(); });
// Create the new DMatrix
this->p_fmat_new_ = std::make_unique<data::IterativeDMatrix>(
new_page, dmat->Info().Slice(ctx, dh::ToSpan(compact_row_index_), nnz), batch_param_);
CHECK_EQ(sample_rows, this->p_fmat_new_->Info().num_row_);
return {this->p_fmat_new_.get(), dh::ToSpan(gpair_)};
}
GradientBasedSampling::GradientBasedSampling(std::size_t n_rows, BatchParam batch_param,
float subsample)
: subsample_(subsample),
batch_param_{std::move(batch_param)},
threshold_(n_rows + 1, 0.0f),
grad_sum_(n_rows, 0.0f) {}
GradientBasedSample GradientBasedSampling::Sample(Context const* ctx,
common::Span<GradientPair> gpair, DMatrix* dmat) {
auto cuctx = ctx->CUDACtx();
size_t n_rows = dmat->Info().num_row_;
size_t threshold_index = GradientBasedSampler::CalculateThresholdIndex(
ctx, gpair, dh::ToSpan(threshold_), dh::ToSpan(grad_sum_), n_rows * subsample_);
// Perform Poisson sampling in place.
thrust::transform(cuctx->CTP(), dh::tbegin(gpair), dh::tend(gpair),
thrust::counting_iterator<size_t>(0), dh::tbegin(gpair),
PoissonSampling(dh::ToSpan(threshold_), threshold_index,
RandomWeight(common::GlobalRandom()())));
return {dmat, gpair};
}
ExternalMemoryGradientBasedSampling::ExternalMemoryGradientBasedSampling(size_t n_rows,
BatchParam batch_param,
float subsample)
: batch_param_(std::move(batch_param)),
subsample_(subsample),
threshold_(n_rows + 1, 0.0f),
grad_sum_(n_rows, 0.0f),
sample_row_index_(n_rows) {}
GradientBasedSample ExternalMemoryGradientBasedSampling::Sample(Context const* ctx,
common::Span<GradientPair> gpair,
DMatrix* dmat) {
auto cuctx = ctx->CUDACtx();
std::shared_ptr<EllpackPage> new_page = std::make_shared<EllpackPage>();
auto page = new_page->Impl();
bst_idx_t n_rows = dmat->Info().num_row_;
size_t threshold_index = GradientBasedSampler::CalculateThresholdIndex(
ctx, gpair, dh::ToSpan(threshold_), dh::ToSpan(grad_sum_), n_rows * subsample_);
// Perform Poisson sampling in place.
thrust::transform(cuctx->CTP(), dh::tbegin(gpair), dh::tend(gpair),
thrust::counting_iterator<size_t>(0), dh::tbegin(gpair),
PoissonSampling{dh::ToSpan(threshold_), threshold_index,
RandomWeight(common::GlobalRandom()())});
// Count the sampled rows.
bst_idx_t sample_rows =
thrust::count_if(cuctx->CTP(), dh::tbegin(gpair), dh::tend(gpair), IsNonZero());
// Compact gradient pairs.
gpair_.resize(sample_rows);
thrust::copy_if(cuctx->CTP(), dh::tbegin(gpair), dh::tend(gpair), gpair_.begin(), IsNonZero());
// Index the sample rows.
thrust::transform(cuctx->CTP(), dh::tbegin(gpair), dh::tend(gpair), sample_row_index_.begin(),
IsNonZero{});
thrust::exclusive_scan(cuctx->CTP(), sample_row_index_.begin(), sample_row_index_.end(),
sample_row_index_.begin());
thrust::transform(cuctx->CTP(), dh::tbegin(gpair), dh::tend(gpair), sample_row_index_.begin(),
sample_row_index_.begin(), ClearEmptyRows{});
auto batch_iterator = dmat->GetBatches<EllpackPage>(ctx, batch_param_);
auto first_page = (*batch_iterator.begin()).Impl();
// Create a new ELLPACK page with empty rows.
*page = EllpackPageImpl{ctx, first_page->CutsShared(), dmat->IsDense(), first_page->row_stride,
sample_rows};
// Compact the ELLPACK pages into the single sample page.
thrust::fill(cuctx->CTP(), page->gidx_buffer.begin(), page->gidx_buffer.end(), 0);
for (auto& batch : batch_iterator) {
page->Compact(ctx, batch.Impl(), dh::ToSpan(sample_row_index_));
}
// Select the metainfo
dmat->Info().feature_types.SetDevice(ctx->Device());
auto nnz = page->NumNonMissing(ctx, dmat->Info().feature_types.ConstDeviceSpan());
compact_row_index_.resize(sample_rows);
thrust::copy_if(
cuctx->TP(), sample_row_index_.cbegin(), sample_row_index_.cend(), compact_row_index_.begin(),
[] XGBOOST_DEVICE(std::size_t idx) { return idx != ClearEmptyRows::InvalidRow(); });
// Create the new DMatrix
this->p_fmat_new_ = std::make_unique<data::IterativeDMatrix>(
new_page, dmat->Info().Slice(ctx, dh::ToSpan(compact_row_index_), nnz), batch_param_);
CHECK_EQ(sample_rows, this->p_fmat_new_->Info().num_row_);
return {this->p_fmat_new_.get(), dh::ToSpan(gpair_)};
}
GradientBasedSampler::GradientBasedSampler(Context const* /*ctx*/, size_t n_rows,
const BatchParam& batch_param, float subsample,
int sampling_method, bool is_external_memory) {
// The ctx is kept here for future development of stream-based operations.
monitor_.Init("gradient_based_sampler");
bool is_sampling = subsample < 1.0;
if (is_sampling) {
switch (sampling_method) {
case TrainParam::kUniform:
if (is_external_memory) {
strategy_.reset(new ExternalMemoryUniformSampling(n_rows, batch_param, subsample));
} else {
strategy_.reset(new UniformSampling(batch_param, subsample));
}
break;
case TrainParam::kGradientBased:
if (is_external_memory) {
strategy_.reset(new ExternalMemoryGradientBasedSampling(n_rows, batch_param, subsample));
} else {
strategy_.reset(new GradientBasedSampling(n_rows, batch_param, subsample));
}
break;
default:
LOG(FATAL) << "unknown sampling method";
}
} else {
if (is_external_memory) {
strategy_.reset(new ExternalMemoryNoSampling(batch_param));
} else {
strategy_.reset(new NoSampling(batch_param));
}
}
}
// Sample a DMatrix based on the given gradient pairs.
GradientBasedSample GradientBasedSampler::Sample(Context const* ctx,
common::Span<GradientPair> gpair, DMatrix* dmat) {
monitor_.Start("Sample");
GradientBasedSample sample = strategy_->Sample(ctx, gpair, dmat);
monitor_.Stop("Sample");
return sample;
}
size_t GradientBasedSampler::CalculateThresholdIndex(Context const* ctx,
common::Span<GradientPair> gpair,
common::Span<float> threshold,
common::Span<float> grad_sum,
size_t sample_rows) {
auto cuctx = ctx->CUDACtx();
thrust::fill(cuctx->CTP(), dh::tend(threshold) - 1, dh::tend(threshold),
std::numeric_limits<float>::max());
thrust::transform(cuctx->CTP(), dh::tbegin(gpair), dh::tend(gpair), dh::tbegin(threshold),
CombineGradientPair{});
thrust::sort(cuctx->TP(), dh::tbegin(threshold), dh::tend(threshold) - 1);
thrust::inclusive_scan(cuctx->CTP(), dh::tbegin(threshold), dh::tend(threshold) - 1,
dh::tbegin(grad_sum));
thrust::transform(cuctx->CTP(), dh::tbegin(grad_sum), dh::tend(grad_sum),
thrust::counting_iterator<size_t>(0), dh::tbegin(grad_sum),
SampleRateDelta(threshold, gpair.size(), sample_rows));
thrust::device_ptr<float> min =
thrust::min_element(cuctx->CTP(), dh::tbegin(grad_sum), dh::tend(grad_sum));
return thrust::distance(dh::tbegin(grad_sum), min) + 1;
}
}; // namespace xgboost::tree