xgboost/R-package/man/xgb.ExternalDMatrix.Rd
Michael Mayer 074cad2343
[R] Finalizes switch to markdown doc (#10733)
---------

Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
2024-08-27 01:25:06 +08:00

122 lines
4.6 KiB
R

% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/xgb.DMatrix.R
\name{xgb.ExternalDMatrix}
\alias{xgb.ExternalDMatrix}
\title{DMatrix from External Data}
\usage{
xgb.ExternalDMatrix(
data_iterator,
cache_prefix = tempdir(),
missing = NA,
nthread = NULL
)
}
\arguments{
\item{data_iterator}{A data iterator structure as returned by \code{\link[=xgb.DataIter]{xgb.DataIter()}},
which includes an environment shared between function calls, and functions to access
the data in batches on-demand.}
\item{cache_prefix}{The path of cache file, caller must initialize all the directories in this path.}
\item{missing}{A float value to represents missing values in data.
Note that, while functions like \code{\link[=xgb.DMatrix]{xgb.DMatrix()}} can take a generic \code{NA} and interpret it
correctly for different types like \code{numeric} and \code{integer}, if an \code{NA} value is passed here,
it will not be adapted for different input types.
For example, in R \code{integer} types, missing values are represented by integer number \code{-2147483648}
(since machine 'integer' types do not have an inherent 'NA' value) - hence, if one passes \code{NA},
which is interpreted as a floating-point NaN by \code{\link[=xgb.ExternalDMatrix]{xgb.ExternalDMatrix()}} and by
\code{\link[=xgb.QuantileDMatrix.from_iterator]{xgb.QuantileDMatrix.from_iterator()}}, these integer missing values will not be treated as missing.
This should not pose any problem for \code{numeric} types, since they do have an inheret NaN value.}
\item{nthread}{Number of threads used for creating DMatrix.}
}
\value{
An 'xgb.DMatrix' object, with subclass 'xgb.ExternalDMatrix', in which the data is not
held internally but accessed through the iterator when needed.
}
\description{
Create a special type of XGBoost 'DMatrix' object from external data
supplied by an \code{\link[=xgb.DataIter]{xgb.DataIter()}} object, potentially passed in batches from a
bigger set that might not fit entirely in memory.
The data supplied by the iterator is accessed on-demand as needed, multiple times,
without being concatenated, but note that fields like 'label' \strong{will} be
concatenated from multiple calls to the data iterator.
For more information, see the guide 'Using XGBoost External Memory Version':
\url{https://xgboost.readthedocs.io/en/stable/tutorials/external_memory.html}
}
\examples{
data(mtcars)
# This custom environment will be passed to the iterator
# functions at each call. It is up to the user to keep
# track of the iteration number in this environment.
iterator_env <- as.environment(
list(
iter = 0,
x = mtcars[, -1],
y = mtcars[, 1]
)
)
# Data is passed in two batches.
# In this example, batches are obtained by subsetting the 'x' variable.
# This is not advantageous to do, since the data is already loaded in memory
# and can be passed in full in one go, but there can be situations in which
# only a subset of the data will fit in the computer's memory, and it can
# be loaded in batches that are accessed one-at-a-time only.
iterator_next <- function(iterator_env) {
curr_iter <- iterator_env[["iter"]]
if (curr_iter >= 2) {
# there are only two batches, so this signals end of the stream
return(NULL)
}
if (curr_iter == 0) {
x_batch <- iterator_env[["x"]][1:16, ]
y_batch <- iterator_env[["y"]][1:16]
} else {
x_batch <- iterator_env[["x"]][17:32, ]
y_batch <- iterator_env[["y"]][17:32]
}
on.exit({
iterator_env[["iter"]] <- curr_iter + 1
})
# Function 'xgb.DataBatch' must be called manually
# at each batch with all the appropriate attributes,
# such as feature names and feature types.
return(xgb.DataBatch(data = x_batch, label = y_batch))
}
# This moves the iterator back to its beginning
iterator_reset <- function(iterator_env) {
iterator_env[["iter"]] <- 0
}
data_iterator <- xgb.DataIter(
env = iterator_env,
f_next = iterator_next,
f_reset = iterator_reset
)
cache_prefix <- tempdir()
# DMatrix will be constructed from the iterator's batches
dm <- xgb.ExternalDMatrix(data_iterator, cache_prefix, nthread = 1)
# After construction, can be used as a regular DMatrix
params <- list(nthread = 1, objective = "reg:squarederror")
model <- xgb.train(data = dm, nrounds = 2, params = params)
# Predictions can also be called on it, and should be the same
# as if the data were passed differently.
pred_dm <- predict(model, dm)
pred_mat <- predict(model, as.matrix(mtcars[, -1]))
}
\seealso{
\code{\link[=xgb.DataIter]{xgb.DataIter()}}, \code{\link[=xgb.DataBatch]{xgb.DataBatch()}}, \code{\link[=xgb.QuantileDMatrix.from_iterator]{xgb.QuantileDMatrix.from_iterator()}}
}