xgboost/src/tree/updater_gpu_hist.cu
Rory Mitchell 4eeeded7d1
Remove various synchronisations from cuda API calls, instrument monitor (#4205)
* Remove various synchronisations from cuda API calls, instrument monitor
with nvtx profiler ranges.
2019-03-10 15:01:23 +13:00

1437 lines
52 KiB
Plaintext

/*!
* Copyright 2017-2018 XGBoost contributors
*/
#include <thrust/copy.h>
#include <thrust/functional.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/reduce.h>
#include <thrust/sequence.h>
#include <xgboost/tree_updater.h>
#include <algorithm>
#include <cmath>
#include <memory>
#include <limits>
#include <queue>
#include <utility>
#include <vector>
#include "../common/common.h"
#include "../common/compressed_iterator.h"
#include "../common/device_helpers.cuh"
#include "../common/hist_util.h"
#include "../common/host_device_vector.h"
#include "../common/timer.h"
#include "../common/span.h"
#include "param.h"
#include "updater_gpu_common.cuh"
namespace xgboost {
namespace tree {
DMLC_REGISTRY_FILE_TAG(updater_gpu_hist);
// training parameters specific to this algorithm
struct GPUHistMakerTrainParam
: public dmlc::Parameter<GPUHistMakerTrainParam> {
bool single_precision_histogram;
// number of rows in a single GPU batch
int gpu_batch_nrows;
// declare parameters
DMLC_DECLARE_PARAMETER(GPUHistMakerTrainParam) {
DMLC_DECLARE_FIELD(single_precision_histogram).set_default(false).describe(
"Use single precision to build histograms.");
DMLC_DECLARE_FIELD(gpu_batch_nrows)
.set_lower_bound(-1)
.set_default(0)
.describe("Number of rows in a GPU batch, used for finding quantiles on GPU; "
"-1 to use all rows assignted to a GPU, and 0 to auto-deduce");
}
};
DMLC_REGISTER_PARAMETER(GPUHistMakerTrainParam);
// With constraints
template <typename GradientPairT>
XGBOOST_DEVICE float inline LossChangeMissing(
const GradientPairT& scan, const GradientPairT& missing, const GradientPairT& parent_sum,
const float& parent_gain, const GPUTrainingParam& param, int constraint,
const ValueConstraint& value_constraint,
bool& missing_left_out) { // NOLINT
float missing_left_gain = value_constraint.CalcSplitGain(
param, constraint, GradStats(scan + missing),
GradStats(parent_sum - (scan + missing)));
float missing_right_gain = value_constraint.CalcSplitGain(
param, constraint, GradStats(scan), GradStats(parent_sum - scan));
if (missing_left_gain >= missing_right_gain) {
missing_left_out = true;
return missing_left_gain - parent_gain;
} else {
missing_left_out = false;
return missing_right_gain - parent_gain;
}
}
/*!
* \brief
*
* \tparam ReduceT BlockReduce Type.
* \tparam TempStorage Cub Shared memory
*
* \param begin
* \param end
* \param temp_storage Shared memory for intermediate result.
*/
template <int BLOCK_THREADS, typename ReduceT, typename TempStorageT, typename GradientSumT>
__device__ GradientSumT ReduceFeature(common::Span<const GradientSumT> feature_histogram,
TempStorageT* temp_storage) {
__shared__ cub::Uninitialized<GradientSumT> uninitialized_sum;
GradientSumT& shared_sum = uninitialized_sum.Alias();
GradientSumT local_sum = GradientSumT();
// For loop sums features into one block size
auto begin = feature_histogram.data();
auto end = begin + feature_histogram.size();
for (auto itr = begin; itr < end; itr += BLOCK_THREADS) {
bool thread_active = itr + threadIdx.x < end;
// Scan histogram
GradientSumT bin = thread_active ? *(itr + threadIdx.x) : GradientSumT();
local_sum += bin;
}
local_sum = ReduceT(temp_storage->sum_reduce).Reduce(local_sum, cub::Sum());
// Reduction result is stored in thread 0.
if (threadIdx.x == 0) {
shared_sum = local_sum;
}
__syncthreads();
return shared_sum;
}
/*! \brief Find the thread with best gain. */
template <int BLOCK_THREADS, typename ReduceT, typename scan_t,
typename MaxReduceT, typename TempStorageT, typename GradientSumT>
__device__ void EvaluateFeature(
int fidx,
common::Span<const GradientSumT> node_histogram,
common::Span<const uint32_t> feature_segments, // cut.row_ptr
float min_fvalue, // cut.min_value
common::Span<const float> gidx_fvalue_map, // cut.cut
DeviceSplitCandidate* best_split, // shared memory storing best split
const DeviceNodeStats& node, const GPUTrainingParam& param,
TempStorageT* temp_storage, // temp memory for cub operations
int constraint, // monotonic_constraints
const ValueConstraint& value_constraint) {
// Use pointer from cut to indicate begin and end of bins for each feature.
uint32_t gidx_begin = feature_segments[fidx]; // begining bin
uint32_t gidx_end = feature_segments[fidx + 1]; // end bin for i^th feature
// Sum histogram bins for current feature
GradientSumT const feature_sum = ReduceFeature<BLOCK_THREADS, ReduceT>(
node_histogram.subspan(gidx_begin, gidx_end - gidx_begin), temp_storage);
GradientSumT const parent_sum = GradientSumT(node.sum_gradients);
GradientSumT const missing = parent_sum - feature_sum;
float const null_gain = -std::numeric_limits<bst_float>::infinity();
SumCallbackOp<GradientSumT> prefix_op =
SumCallbackOp<GradientSumT>();
for (int scan_begin = gidx_begin; scan_begin < gidx_end;
scan_begin += BLOCK_THREADS) {
bool thread_active = (scan_begin + threadIdx.x) < gidx_end;
// Gradient value for current bin.
GradientSumT bin =
thread_active ? node_histogram[scan_begin + threadIdx.x] : GradientSumT();
scan_t(temp_storage->scan).ExclusiveScan(bin, bin, cub::Sum(), prefix_op);
// Whether the gradient of missing values is put to the left side.
bool missing_left = true;
float gain = null_gain;
if (thread_active) {
gain = LossChangeMissing(bin, missing, parent_sum, node.root_gain, param,
constraint, value_constraint, missing_left);
}
__syncthreads();
// Find thread with best gain
cub::KeyValuePair<int, float> tuple(threadIdx.x, gain);
cub::KeyValuePair<int, float> best =
MaxReduceT(temp_storage->max_reduce).Reduce(tuple, cub::ArgMax());
__shared__ cub::KeyValuePair<int, float> block_max;
if (threadIdx.x == 0) {
block_max = best;
}
__syncthreads();
// Best thread updates split
if (threadIdx.x == block_max.key) {
int gidx = scan_begin + threadIdx.x;
float fvalue =
gidx == gidx_begin ? min_fvalue : gidx_fvalue_map[gidx - 1];
GradientSumT left = missing_left ? bin + missing : bin;
GradientSumT right = parent_sum - left;
best_split->Update(gain, missing_left ? kLeftDir : kRightDir,
fvalue, fidx,
GradientPair(left),
GradientPair(right),
param);
}
__syncthreads();
}
}
template <int BLOCK_THREADS, typename GradientSumT>
__global__ void EvaluateSplitKernel(
common::Span<const GradientSumT>
node_histogram, // histogram for gradients
common::Span<const int> feature_set, // Selected features
DeviceNodeStats node,
common::Span<const uint32_t>
d_feature_segments, // row_ptr form HistCutMatrix
common::Span<const float> d_fidx_min_map, // min_value
common::Span<const float> d_gidx_fvalue_map, // cut
GPUTrainingParam gpu_param,
common::Span<DeviceSplitCandidate> split_candidates, // resulting split
ValueConstraint value_constraint,
common::Span<int> d_monotonic_constraints) {
// KeyValuePair here used as threadIdx.x -> gain_value
typedef cub::KeyValuePair<int, float> ArgMaxT;
typedef cub::BlockScan<
GradientSumT, BLOCK_THREADS, cub::BLOCK_SCAN_WARP_SCANS> BlockScanT;
typedef cub::BlockReduce<ArgMaxT, BLOCK_THREADS> MaxReduceT;
typedef cub::BlockReduce<GradientSumT, BLOCK_THREADS> SumReduceT;
union TempStorage {
typename BlockScanT::TempStorage scan;
typename MaxReduceT::TempStorage max_reduce;
typename SumReduceT::TempStorage sum_reduce;
};
// Aligned && shared storage for best_split
__shared__ cub::Uninitialized<DeviceSplitCandidate> uninitialized_split;
DeviceSplitCandidate& best_split = uninitialized_split.Alias();
__shared__ TempStorage temp_storage;
if (threadIdx.x == 0) {
best_split = DeviceSplitCandidate();
}
__syncthreads();
// One block for each feature. Features are sampled, so fidx != blockIdx.x
int fidx = feature_set[blockIdx.x];
int constraint = d_monotonic_constraints[fidx];
EvaluateFeature<BLOCK_THREADS, SumReduceT, BlockScanT, MaxReduceT>(
fidx, node_histogram,
d_feature_segments, d_fidx_min_map[fidx], d_gidx_fvalue_map,
&best_split, node, gpu_param, &temp_storage, constraint,
value_constraint);
__syncthreads();
if (threadIdx.x == 0) {
// Record best loss for each feature
split_candidates[blockIdx.x] = best_split;
}
}
// Find a gidx value for a given feature otherwise return -1 if not found
template <typename GidxIterT>
__device__ int BinarySearchRow(bst_uint begin, bst_uint end, GidxIterT data,
int const fidx_begin, int const fidx_end) {
bst_uint previous_middle = UINT32_MAX;
while (end != begin) {
auto middle = begin + (end - begin) / 2;
if (middle == previous_middle) {
break;
}
previous_middle = middle;
auto gidx = data[middle];
if (gidx >= fidx_begin && gidx < fidx_end) {
return gidx;
} else if (gidx < fidx_begin) {
begin = middle;
} else {
end = middle;
}
}
// Value is missing
return -1;
}
/**
* \struct DeviceHistogram
*
* \summary Data storage for node histograms on device. Automatically expands.
*
* \author Rory
* \date 28/07/2018
*/
template <typename GradientSumT>
struct DeviceHistogram {
/*! \brief Map nidx to starting index of its histogram. */
std::map<int, size_t> nidx_map;
thrust::device_vector<typename GradientSumT::ValueT> data;
const size_t kStopGrowingSize = 1 << 26; // Do not grow beyond this size
int n_bins;
int device_id_;
void Init(int device_id, int n_bins) {
this->n_bins = n_bins;
this->device_id_ = device_id;
}
void Reset() {
dh::safe_cuda(cudaSetDevice(device_id_));
dh::safe_cuda(cudaMemsetAsync(
data.data().get(), 0,
data.size() * sizeof(typename decltype(data)::value_type)));
nidx_map.clear();
}
bool HistogramExists(int nidx) {
return nidx_map.find(nidx) != nidx_map.end();
}
void AllocateHistogram(int nidx) {
if (HistogramExists(nidx)) return;
size_t current_size =
nidx_map.size() * n_bins * 2; // Number of items currently used in data
dh::safe_cuda(cudaSetDevice(device_id_));
if (data.size() >= kStopGrowingSize) {
// Recycle histogram memory
std::pair<int, size_t> old_entry = *nidx_map.begin();
nidx_map.erase(old_entry.first);
dh::safe_cuda(cudaMemsetAsync(data.data().get() + old_entry.second, 0,
n_bins * sizeof(GradientSumT)));
nidx_map[nidx] = old_entry.second;
} else {
// Append new node histogram
nidx_map[nidx] = current_size;
if (data.size() < current_size + n_bins * 2) {
size_t new_size = current_size * 2; // Double in size
new_size = std::max(static_cast<size_t>(n_bins * 2),
new_size); // Have at least one histogram
data.resize(new_size);
}
}
}
/**
* \summary Return pointer to histogram memory for a given node.
* \param nidx Tree node index.
* \return hist pointer.
*/
common::Span<GradientSumT> GetNodeHistogram(int nidx) {
CHECK(this->HistogramExists(nidx));
auto ptr = data.data().get() + nidx_map[nidx];
return common::Span<GradientSumT>(
reinterpret_cast<GradientSumT*>(ptr), n_bins);
}
};
struct CalcWeightTrainParam {
float min_child_weight;
float reg_alpha;
float reg_lambda;
float max_delta_step;
float learning_rate;
XGBOOST_DEVICE explicit CalcWeightTrainParam(const TrainParam& p)
: min_child_weight(p.min_child_weight),
reg_alpha(p.reg_alpha),
reg_lambda(p.reg_lambda),
max_delta_step(p.max_delta_step),
learning_rate(p.learning_rate) {}
};
// Bin each input data entry, store the bin indices in compressed form.
__global__ void compress_bin_ellpack_k(
common::CompressedBufferWriter wr,
common::CompressedByteT* __restrict__ buffer, // gidx_buffer
const size_t* __restrict__ row_ptrs, // row offset of input data
const Entry* __restrict__ entries, // One batch of input data
const float* __restrict__ cuts, // HistCutMatrix::cut
const uint32_t* __restrict__ cut_rows, // HistCutMatrix::row_ptrs
size_t base_row, // batch_row_begin
size_t n_rows,
// row_ptr_begin: row_offset[base_row], the start position of base_row
size_t row_ptr_begin,
size_t row_stride,
unsigned int null_gidx_value) {
size_t irow = threadIdx.x + blockIdx.x * blockDim.x;
int ifeature = threadIdx.y + blockIdx.y * blockDim.y;
if (irow >= n_rows || ifeature >= row_stride)
return;
int row_length = static_cast<int>(row_ptrs[irow + 1] - row_ptrs[irow]);
unsigned int bin = null_gidx_value;
if (ifeature < row_length) {
Entry entry = entries[row_ptrs[irow] - row_ptr_begin + ifeature];
int feature = entry.index;
float fvalue = entry.fvalue;
// {feature_cuts, ncuts} forms the array of cuts of `feature'.
const float *feature_cuts = &cuts[cut_rows[feature]];
int ncuts = cut_rows[feature + 1] - cut_rows[feature];
// Assigning the bin in current entry.
// S.t.: fvalue < feature_cuts[bin]
bin = dh::UpperBound(feature_cuts, ncuts, fvalue);
if (bin >= ncuts)
bin = ncuts - 1;
// Add the number of bins in previous features.
bin += cut_rows[feature];
}
// Write to gidx buffer.
wr.AtomicWriteSymbol(buffer, bin, (irow + base_row) * row_stride + ifeature);
}
template <typename GradientSumT>
__global__ void SharedMemHistKernel(size_t row_stride, const bst_uint* d_ridx,
common::CompressedIterator<uint32_t> d_gidx,
int null_gidx_value,
GradientSumT* d_node_hist,
const GradientPair* d_gpair,
size_t segment_begin, size_t n_elements) {
extern __shared__ char smem[];
GradientSumT* smem_arr = reinterpret_cast<GradientSumT*>(smem); // NOLINT
for (auto i : dh::BlockStrideRange(0, null_gidx_value)) {
smem_arr[i] = GradientSumT();
}
__syncthreads();
for (auto idx : dh::GridStrideRange(static_cast<size_t>(0), n_elements)) {
int ridx = d_ridx[idx / row_stride + segment_begin];
int gidx = d_gidx[ridx * row_stride + idx % row_stride];
if (gidx != null_gidx_value) {
AtomicAddGpair(smem_arr + gidx, d_gpair[ridx]);
}
}
__syncthreads();
for (auto i : dh::BlockStrideRange(0, null_gidx_value)) {
AtomicAddGpair(d_node_hist + i, smem_arr[i]);
}
}
struct Segment {
size_t begin;
size_t end;
Segment() : begin(0), end(0) {}
Segment(size_t begin, size_t end) : begin(begin), end(end) {
CHECK_GE(end, begin);
}
size_t Size() const { return end - begin; }
};
/** \brief Returns a one if the left node index is encountered, otherwise return
* zero. */
struct IndicateLeftTransform {
int left_nidx;
explicit IndicateLeftTransform(int left_nidx) : left_nidx(left_nidx) {}
__host__ __device__ __forceinline__ int operator()(const int& x) const {
return x == left_nidx ? 1 : 0;
}
};
/**
* \brief Optimised routine for sorting key value pairs into left and right
* segments. Based on a single pass of exclusive scan, uses iterators to
* redirect inputs and outputs.
*/
void SortPosition(dh::CubMemory* temp_memory, common::Span<int> position,
common::Span<int> position_out, common::Span<bst_uint> ridx,
common::Span<bst_uint> ridx_out, int left_nidx,
int right_nidx, int64_t left_count) {
auto d_position_out = position_out.data();
auto d_position_in = position.data();
auto d_ridx_out = ridx_out.data();
auto d_ridx_in = ridx.data();
auto write_results = [=] __device__(size_t idx, int ex_scan_result) {
int scatter_address;
if (d_position_in[idx] == left_nidx) {
scatter_address = ex_scan_result;
} else {
scatter_address = (idx - ex_scan_result) + left_count;
}
d_position_out[scatter_address] = d_position_in[idx];
d_ridx_out[scatter_address] = d_ridx_in[idx];
}; // NOLINT
IndicateLeftTransform conversion_op(left_nidx);
cub::TransformInputIterator<int, IndicateLeftTransform, int*> in_itr(
d_position_in, conversion_op);
dh::DiscardLambdaItr<decltype(write_results)> out_itr(write_results);
size_t temp_storage_bytes = 0;
cub::DeviceScan::ExclusiveSum(nullptr, temp_storage_bytes, in_itr, out_itr,
position.size());
temp_memory->LazyAllocate(temp_storage_bytes);
cub::DeviceScan::ExclusiveSum(temp_memory->d_temp_storage,
temp_memory->temp_storage_bytes, in_itr,
out_itr, position.size());
}
template <typename GradientSumT>
struct DeviceShard;
template <typename GradientSumT>
struct GPUHistBuilderBase {
public:
virtual void Build(DeviceShard<GradientSumT>* shard, int idx) = 0;
virtual ~GPUHistBuilderBase() = default;
};
// Manage memory for a single GPU
template <typename GradientSumT>
struct DeviceShard {
int device_id_;
dh::BulkAllocator<dh::MemoryType::kDevice> ba;
/*! \brief HistCutMatrix stored in device. */
struct DeviceHistCutMatrix {
/*! \brief row_ptr form HistCutMatrix. */
dh::DVec<uint32_t> feature_segments;
/*! \brief minimum value for each feature. */
dh::DVec<bst_float> min_fvalue;
/*! \brief Cut. */
dh::DVec<bst_float> gidx_fvalue_map;
} cut_;
/*! \brief Range of rows for each node. */
std::vector<Segment> ridx_segments;
DeviceHistogram<GradientSumT> hist;
/*! \brief global index of histogram, which is stored in ELLPack format. */
dh::DVec<common::CompressedByteT> gidx_buffer;
/*! \brief row length for ELLPack. */
size_t row_stride;
common::CompressedIterator<uint32_t> gidx;
/*! \brief Row indices relative to this shard, necessary for sorting rows. */
dh::DVec2<bst_uint> ridx;
/*! \brief Gradient pair for each row. */
dh::DVec<GradientPair> gpair;
/*! \brief The last histogram index. */
int null_gidx_value;
dh::DVec2<int> position;
dh::DVec<int> monotone_constraints;
dh::DVec<bst_float> prediction_cache;
/*! \brief Sum gradient for each node. */
std::vector<GradientPair> node_sum_gradients;
dh::DVec<GradientPair> node_sum_gradients_d;
/*! \brief row offset in SparsePage (the input data). */
thrust::device_vector<size_t> row_ptrs;
/*! \brief On-device feature set, only actually used on one of the devices */
thrust::device_vector<int> feature_set_d;
/*! The row offset for this shard. */
bst_uint row_begin_idx;
bst_uint row_end_idx;
bst_uint n_rows;
int n_bins;
TrainParam param;
bool prediction_cache_initialised;
dh::CubMemory temp_memory;
std::unique_ptr<GPUHistBuilderBase<GradientSumT>> hist_builder;
// TODO(canonizer): do add support multi-batch DMatrix here
DeviceShard(int device_id, bst_uint row_begin, bst_uint row_end,
TrainParam _param)
: device_id_(device_id),
row_begin_idx(row_begin),
row_end_idx(row_end),
row_stride(0),
n_rows(row_end - row_begin),
n_bins(0),
null_gidx_value(0),
param(_param),
prediction_cache_initialised(false) {}
/* Init row_ptrs and row_stride */
void InitRowPtrs(const SparsePage& row_batch) {
dh::safe_cuda(cudaSetDevice(device_id_));
const auto& offset_vec = row_batch.offset.HostVector();
row_ptrs.resize(n_rows + 1);
thrust::copy(offset_vec.data() + row_begin_idx,
offset_vec.data() + row_end_idx + 1,
row_ptrs.begin());
auto row_iter = row_ptrs.begin();
// find the maximum row size for converting to ELLPack
auto get_size = [=] __device__(size_t row) {
return row_iter[row + 1] - row_iter[row];
}; // NOLINT
auto counting = thrust::make_counting_iterator(size_t(0));
using TransformT = thrust::transform_iterator<decltype(get_size),
decltype(counting), size_t>;
TransformT row_size_iter = TransformT(counting, get_size);
row_stride = thrust::reduce(row_size_iter, row_size_iter + n_rows, 0,
thrust::maximum<size_t>());
}
/*
Init:
n_bins, null_gidx_value, gidx_buffer, row_ptrs, gidx, gidx_fvalue_map,
min_fvalue, feature_segments, node_sum_gradients, ridx_segments,
hist
*/
void InitCompressedData(
const common::HistCutMatrix& hmat, const SparsePage& row_batch);
void CreateHistIndices(const SparsePage& row_batch);
~DeviceShard() {
}
// Reset values for each update iteration
void Reset(HostDeviceVector<GradientPair>* dh_gpair) {
dh::safe_cuda(cudaSetDevice(device_id_));
position.CurrentDVec().Fill(0);
std::fill(node_sum_gradients.begin(), node_sum_gradients.end(),
GradientPair());
thrust::sequence(ridx.CurrentDVec().tbegin(), ridx.CurrentDVec().tend());
std::fill(ridx_segments.begin(), ridx_segments.end(), Segment(0, 0));
ridx_segments.front() = Segment(0, ridx.Size());
this->gpair.copy(dh_gpair->tcbegin(device_id_),
dh_gpair->tcend(device_id_));
SubsampleGradientPair(&gpair, param.subsample, row_begin_idx);
hist.Reset();
}
DeviceSplitCandidate EvaluateSplit(int nidx,
const std::vector<int>& feature_set,
ValueConstraint value_constraint) {
dh::safe_cuda(cudaSetDevice(device_id_));
auto d_split_candidates = temp_memory.GetSpan<DeviceSplitCandidate>(feature_set.size());
feature_set_d.resize(feature_set.size());
auto d_features = common::Span<int>(feature_set_d.data().get(),
feature_set_d.size());
dh::safe_cuda(cudaMemcpyAsync(d_features.data(), feature_set.data(),
d_features.size_bytes(), cudaMemcpyDefault));
DeviceNodeStats node(node_sum_gradients[nidx], nidx, param);
// One block for each feature
int constexpr BLOCK_THREADS = 256;
EvaluateSplitKernel<BLOCK_THREADS, GradientSumT>
<<<uint32_t(feature_set.size()), BLOCK_THREADS, 0>>>(
hist.GetNodeHistogram(nidx), d_features, node,
cut_.feature_segments.GetSpan(), cut_.min_fvalue.GetSpan(),
cut_.gidx_fvalue_map.GetSpan(), GPUTrainingParam(param),
d_split_candidates, value_constraint,
monotone_constraints.GetSpan());
std::vector<DeviceSplitCandidate> split_candidates(feature_set.size());
dh::safe_cuda(cudaMemcpy(split_candidates.data(), d_split_candidates.data(),
split_candidates.size() * sizeof(DeviceSplitCandidate),
cudaMemcpyDeviceToHost));
DeviceSplitCandidate best_split;
for (auto candidate : split_candidates) {
best_split.Update(candidate, param);
}
return best_split;
}
void BuildHist(int nidx) {
hist.AllocateHistogram(nidx);
hist_builder->Build(this, nidx);
}
void SubtractionTrick(int nidx_parent, int nidx_histogram,
int nidx_subtraction) {
auto d_node_hist_parent = hist.GetNodeHistogram(nidx_parent);
auto d_node_hist_histogram = hist.GetNodeHistogram(nidx_histogram);
auto d_node_hist_subtraction = hist.GetNodeHistogram(nidx_subtraction);
dh::LaunchN(device_id_, hist.n_bins, [=] __device__(size_t idx) {
d_node_hist_subtraction[idx] =
d_node_hist_parent[idx] - d_node_hist_histogram[idx];
});
}
bool CanDoSubtractionTrick(int nidx_parent, int nidx_histogram,
int nidx_subtraction) {
// Make sure histograms are already allocated
hist.AllocateHistogram(nidx_subtraction);
return hist.HistogramExists(nidx_histogram) &&
hist.HistogramExists(nidx_parent);
}
void UpdatePosition(int nidx, int left_nidx, int right_nidx, int fidx,
int64_t split_gidx, bool default_dir_left, bool is_dense,
int fidx_begin, // cut.row_ptr[fidx]
int fidx_end) { // cut.row_ptr[fidx + 1]
dh::safe_cuda(cudaSetDevice(device_id_));
Segment segment = ridx_segments[nidx];
bst_uint* d_ridx = ridx.Current();
int* d_position = position.Current();
common::CompressedIterator<uint32_t> d_gidx = gidx;
size_t row_stride = this->row_stride;
// Launch 1 thread for each row
dh::LaunchN<1, 128>(
device_id_, segment.Size(), [=] __device__(bst_uint idx) {
idx += segment.begin;
bst_uint ridx = d_ridx[idx];
auto row_begin = row_stride * ridx;
auto row_end = row_begin + row_stride;
auto gidx = -1;
if (is_dense) {
// FIXME: Maybe just search the cuts again.
gidx = d_gidx[row_begin + fidx];
} else {
gidx = BinarySearchRow(row_begin, row_end, d_gidx, fidx_begin,
fidx_end);
}
// belong to left node or right node.
int position;
if (gidx >= 0) {
// Feature is found
position = gidx <= split_gidx ? left_nidx : right_nidx;
} else {
// Feature is missing
position = default_dir_left ? left_nidx : right_nidx;
}
d_position[idx] = position;
});
IndicateLeftTransform conversion_op(left_nidx);
cub::TransformInputIterator<int, IndicateLeftTransform, int*> left_itr(
d_position + segment.begin, conversion_op);
int left_count = dh::SumReduction(temp_memory, left_itr, segment.Size());
CHECK_LE(left_count, segment.Size());
CHECK_GE(left_count, 0);
SortPositionAndCopy(segment, left_nidx, right_nidx, left_count);
ridx_segments[left_nidx] =
Segment(segment.begin, segment.begin + left_count);
ridx_segments[right_nidx] =
Segment(segment.begin + left_count, segment.end);
}
/*! \brief Sort row indices according to position. */
void SortPositionAndCopy(const Segment& segment, int left_nidx, int right_nidx,
size_t left_count) {
SortPosition(
&temp_memory,
common::Span<int>(position.Current() + segment.begin, segment.Size()),
common::Span<int>(position.other() + segment.begin, segment.Size()),
common::Span<bst_uint>(ridx.Current() + segment.begin, segment.Size()),
common::Span<bst_uint>(ridx.other() + segment.begin, segment.Size()),
left_nidx, right_nidx, left_count);
// Copy back key/value
const auto d_position_current = position.Current() + segment.begin;
const auto d_position_other = position.other() + segment.begin;
const auto d_ridx_current = ridx.Current() + segment.begin;
const auto d_ridx_other = ridx.other() + segment.begin;
dh::LaunchN(device_id_, segment.Size(), [=] __device__(size_t idx) {
d_position_current[idx] = d_position_other[idx];
d_ridx_current[idx] = d_ridx_other[idx];
});
}
void UpdatePredictionCache(bst_float* out_preds_d) {
dh::safe_cuda(cudaSetDevice(device_id_));
if (!prediction_cache_initialised) {
dh::safe_cuda(cudaMemcpyAsync(
prediction_cache.Data(), out_preds_d,
prediction_cache.Size() * sizeof(bst_float), cudaMemcpyDefault));
}
prediction_cache_initialised = true;
CalcWeightTrainParam param_d(param);
dh::safe_cuda(cudaMemcpyAsync(node_sum_gradients_d.Data(),
node_sum_gradients.data(),
sizeof(GradientPair) * node_sum_gradients.size(),
cudaMemcpyHostToDevice));
auto d_position = position.Current();
auto d_ridx = ridx.Current();
auto d_node_sum_gradients = node_sum_gradients_d.Data();
auto d_prediction_cache = prediction_cache.Data();
dh::LaunchN(
device_id_, prediction_cache.Size(), [=] __device__(int local_idx) {
int pos = d_position[local_idx];
bst_float weight = CalcWeight(param_d, d_node_sum_gradients[pos]);
d_prediction_cache[d_ridx[local_idx]] +=
weight * param_d.learning_rate;
});
dh::safe_cuda(cudaMemcpy(
out_preds_d, prediction_cache.Data(),
prediction_cache.Size() * sizeof(bst_float), cudaMemcpyDefault));
}
};
template <typename GradientSumT>
struct SharedMemHistBuilder : public GPUHistBuilderBase<GradientSumT> {
void Build(DeviceShard<GradientSumT>* shard, int nidx) override {
auto segment = shard->ridx_segments[nidx];
auto segment_begin = segment.begin;
auto d_node_hist = shard->hist.GetNodeHistogram(nidx);
auto d_gidx = shard->gidx;
auto d_ridx = shard->ridx.Current();
auto d_gpair = shard->gpair.Data();
int null_gidx_value = shard->null_gidx_value;
auto n_elements = segment.Size() * shard->row_stride;
const size_t smem_size = sizeof(GradientSumT) * shard->null_gidx_value;
const int items_per_thread = 8;
const int block_threads = 256;
const int grid_size =
static_cast<int>(dh::DivRoundUp(n_elements,
items_per_thread * block_threads));
if (grid_size <= 0) {
return;
}
dh::safe_cuda(cudaSetDevice(shard->device_id_));
SharedMemHistKernel<<<grid_size, block_threads, smem_size>>>
(shard->row_stride, d_ridx, d_gidx, null_gidx_value, d_node_hist.data(), d_gpair,
segment_begin, n_elements);
}
};
template <typename GradientSumT>
struct GlobalMemHistBuilder : public GPUHistBuilderBase<GradientSumT> {
void Build(DeviceShard<GradientSumT>* shard, int nidx) override {
Segment segment = shard->ridx_segments[nidx];
auto d_node_hist = shard->hist.GetNodeHistogram(nidx).data();
common::CompressedIterator<uint32_t> d_gidx = shard->gidx;
bst_uint* d_ridx = shard->ridx.Current();
GradientPair* d_gpair = shard->gpair.Data();
size_t const n_elements = segment.Size() * shard->row_stride;
size_t const row_stride = shard->row_stride;
int const null_gidx_value = shard->null_gidx_value;
dh::LaunchN(shard->device_id_, n_elements, [=] __device__(size_t idx) {
int ridx = d_ridx[(idx / row_stride) + segment.begin];
// lookup the index (bin) of histogram.
int gidx = d_gidx[ridx * row_stride + idx % row_stride];
if (gidx != null_gidx_value) {
AtomicAddGpair(d_node_hist + gidx, d_gpair[ridx]);
}
});
}
};
template <typename GradientSumT>
inline void DeviceShard<GradientSumT>::InitCompressedData(
const common::HistCutMatrix& hmat, const SparsePage& row_batch) {
n_bins = hmat.row_ptr.back();
null_gidx_value = hmat.row_ptr.back();
int max_nodes =
param.max_leaves > 0 ? param.max_leaves * 2 : MaxNodesDepth(param.max_depth);
ba.Allocate(device_id_,
&gpair, n_rows,
&ridx, n_rows,
&position, n_rows,
&prediction_cache, n_rows,
&node_sum_gradients_d, max_nodes,
&cut_.feature_segments, hmat.row_ptr.size(),
&cut_.gidx_fvalue_map, hmat.cut.size(),
&cut_.min_fvalue, hmat.min_val.size(),
&monotone_constraints, param.monotone_constraints.size());
cut_.gidx_fvalue_map = hmat.cut;
cut_.min_fvalue = hmat.min_val;
cut_.feature_segments = hmat.row_ptr;
monotone_constraints = param.monotone_constraints;
node_sum_gradients.resize(max_nodes);
ridx_segments.resize(max_nodes);
dh::safe_cuda(cudaSetDevice(device_id_));
// allocate compressed bin data
int num_symbols = n_bins + 1;
// Required buffer size for storing data matrix in ELLPack format.
size_t compressed_size_bytes =
common::CompressedBufferWriter::CalculateBufferSize(row_stride * n_rows,
num_symbols);
CHECK(!(param.max_leaves == 0 && param.max_depth == 0))
<< "Max leaves and max depth cannot both be unconstrained for "
"gpu_hist.";
ba.Allocate(device_id_, &gidx_buffer, compressed_size_bytes);
gidx_buffer.Fill(0);
int nbits = common::detail::SymbolBits(num_symbols);
CreateHistIndices(row_batch);
gidx = common::CompressedIterator<uint32_t>(gidx_buffer.Data(), num_symbols);
// check if we can use shared memory for building histograms
// (assuming atleast we need 2 CTAs per SM to maintain decent latency hiding)
auto histogram_size = sizeof(GradientSumT) * null_gidx_value;
auto max_smem = dh::MaxSharedMemory(device_id_);
if (histogram_size <= max_smem) {
hist_builder.reset(new SharedMemHistBuilder<GradientSumT>);
} else {
hist_builder.reset(new GlobalMemHistBuilder<GradientSumT>);
}
// Init histogram
hist.Init(device_id_, hmat.row_ptr.back());
}
template <typename GradientSumT>
inline void DeviceShard<GradientSumT>::CreateHistIndices(const SparsePage& row_batch) {
int num_symbols = n_bins + 1;
// bin and compress entries in batches of rows
size_t gpu_batch_nrows =
std::min
(dh::TotalMemory(device_id_) / (16 * row_stride * sizeof(Entry)),
static_cast<size_t>(n_rows));
const std::vector<Entry>& data_vec = row_batch.data.HostVector();
thrust::device_vector<Entry> entries_d(gpu_batch_nrows * row_stride);
size_t gpu_nbatches = dh::DivRoundUp(n_rows, gpu_batch_nrows);
for (size_t gpu_batch = 0; gpu_batch < gpu_nbatches; ++gpu_batch) {
size_t batch_row_begin = gpu_batch * gpu_batch_nrows;
size_t batch_row_end = (gpu_batch + 1) * gpu_batch_nrows;
if (batch_row_end > n_rows) {
batch_row_end = n_rows;
}
size_t batch_nrows = batch_row_end - batch_row_begin;
// number of entries in this batch.
size_t n_entries = row_ptrs[batch_row_end] - row_ptrs[batch_row_begin];
// copy data entries to device.
dh::safe_cuda
(cudaMemcpy
(entries_d.data().get(), data_vec.data() + row_ptrs[batch_row_begin],
n_entries * sizeof(Entry), cudaMemcpyDefault));
const dim3 block3(32, 8, 1); // 256 threads
const dim3 grid3(dh::DivRoundUp(n_rows, block3.x),
dh::DivRoundUp(row_stride, block3.y), 1);
compress_bin_ellpack_k<<<grid3, block3>>>
(common::CompressedBufferWriter(num_symbols),
gidx_buffer.Data(),
row_ptrs.data().get() + batch_row_begin,
entries_d.data().get(),
cut_.gidx_fvalue_map.Data(), cut_.feature_segments.Data(),
batch_row_begin, batch_nrows,
row_ptrs[batch_row_begin],
row_stride, null_gidx_value);
}
// free the memory that is no longer needed
row_ptrs.resize(0);
row_ptrs.shrink_to_fit();
entries_d.resize(0);
entries_d.shrink_to_fit();
}
template <typename GradientSumT>
class GPUHistMakerSpecialised{
public:
struct ExpandEntry;
GPUHistMakerSpecialised() : initialised_(false), p_last_fmat_(nullptr) {}
void Init(
const std::vector<std::pair<std::string, std::string>>& args) {
param_.InitAllowUnknown(args);
hist_maker_param_.InitAllowUnknown(args);
CHECK(param_.n_gpus != 0) << "Must have at least one device";
n_devices_ = param_.n_gpus;
dist_ = GPUDistribution::Block(GPUSet::All(param_.gpu_id, param_.n_gpus));
dh::CheckComputeCapability();
if (param_.grow_policy == TrainParam::kLossGuide) {
qexpand_.reset(new ExpandQueue(LossGuide));
} else {
qexpand_.reset(new ExpandQueue(DepthWise));
}
monitor_.Init("updater_gpu_hist");
}
void Update(HostDeviceVector<GradientPair>* gpair, DMatrix* dmat,
const std::vector<RegTree*>& trees) {
monitor_.StartCuda("Update");
// rescale learning rate according to size of trees
float lr = param_.learning_rate;
param_.learning_rate = lr / trees.size();
ValueConstraint::Init(&param_, dmat->Info().num_col_);
// build tree
try {
for (size_t i = 0; i < trees.size(); ++i) {
this->UpdateTree(gpair, dmat, trees[i]);
}
dh::safe_cuda(cudaGetLastError());
} catch (const std::exception& e) {
LOG(FATAL) << "Exception in gpu_hist: " << e.what() << std::endl;
}
param_.learning_rate = lr;
monitor_.StopCuda("Update");
}
void InitDataOnce(DMatrix* dmat) {
info_ = &dmat->Info();
int n_devices = dist_.Devices().Size();
device_list_.resize(n_devices);
for (int index = 0; index < n_devices; ++index) {
int device_id = dist_.Devices().DeviceId(index);
device_list_[index] = device_id;
}
reducer_.Init(device_list_);
auto batch_iter = dmat->GetRowBatches().begin();
const SparsePage& batch = *batch_iter;
// Create device shards
shards_.resize(n_devices);
dh::ExecuteIndexShards(&shards_, [&](int i, std::unique_ptr<DeviceShard<GradientSumT>>& shard) {
size_t start = dist_.ShardStart(info_->num_row_, i);
size_t size = dist_.ShardSize(info_->num_row_, i);
shard = std::unique_ptr<DeviceShard<GradientSumT>>
(new DeviceShard<GradientSumT>(dist_.Devices().DeviceId(i),
start, start + size, param_));
shard->InitRowPtrs(batch);
});
// Find the cuts.
monitor_.StartCuda("Quantiles");
common::DeviceSketch(batch, *info_, param_, &hmat_, hist_maker_param_.gpu_batch_nrows);
n_bins_ = hmat_.row_ptr.back();
monitor_.StopCuda("Quantiles");
monitor_.StartCuda("BinningCompression");
dh::ExecuteIndexShards(&shards_, [&](int idx,
std::unique_ptr<DeviceShard<GradientSumT>>& shard) {
shard->InitCompressedData(hmat_, batch);
});
monitor_.StopCuda("BinningCompression");
++batch_iter;
CHECK(batch_iter.AtEnd()) << "External memory not supported";
p_last_fmat_ = dmat;
initialised_ = true;
}
void InitData(HostDeviceVector<GradientPair>* gpair, DMatrix* dmat) {
if (!initialised_) {
monitor_.StartCuda("InitDataOnce");
this->InitDataOnce(dmat);
monitor_.StopCuda("InitDataOnce");
}
column_sampler_.Init(info_->num_col_, param_.colsample_bynode,
param_.colsample_bylevel, param_.colsample_bytree);
// Copy gpair & reset memory
monitor_.StartCuda("InitDataReset");
gpair->Reshard(dist_);
dh::ExecuteIndexShards(
&shards_,
[&](int idx, std::unique_ptr<DeviceShard<GradientSumT>>& shard) {
shard->Reset(gpair);
});
monitor_.StopCuda("InitDataReset");
}
void AllReduceHist(int nidx) {
if (shards_.size() == 1 && !rabit::IsDistributed()) return;
monitor_.StartCuda("AllReduce");
reducer_.GroupStart();
for (auto& shard : shards_) {
auto d_node_hist = shard->hist.GetNodeHistogram(nidx).data();
reducer_.AllReduceSum(
dist_.Devices().Index(shard->device_id_),
reinterpret_cast<typename GradientSumT::ValueT*>(d_node_hist),
reinterpret_cast<typename GradientSumT::ValueT*>(d_node_hist),
n_bins_ * (sizeof(GradientSumT) / sizeof(typename GradientSumT::ValueT)));
}
reducer_.GroupEnd();
reducer_.Synchronize();
monitor_.StopCuda("AllReduce");
}
/**
* \brief Build GPU local histograms for the left and right child of some parent node
*/
void BuildHistLeftRight(int nidx_parent, int nidx_left, int nidx_right) {
size_t left_node_max_elements = 0;
size_t right_node_max_elements = 0;
for (auto& shard : shards_) {
left_node_max_elements = (std::max)(
left_node_max_elements, shard->ridx_segments[nidx_left].Size());
right_node_max_elements = (std::max)(
right_node_max_elements, shard->ridx_segments[nidx_right].Size());
}
rabit::Allreduce<rabit::op::Max, size_t>(&left_node_max_elements, 1);
rabit::Allreduce<rabit::op::Max, size_t>(&right_node_max_elements, 1);
auto build_hist_nidx = nidx_left;
auto subtraction_trick_nidx = nidx_right;
if (right_node_max_elements < left_node_max_elements) {
build_hist_nidx = nidx_right;
subtraction_trick_nidx = nidx_left;
}
// Build histogram for node with the smallest number of training examples
dh::ExecuteIndexShards(
&shards_,
[&](int idx, std::unique_ptr<DeviceShard<GradientSumT>>& shard) {
shard->BuildHist(build_hist_nidx);
});
this->AllReduceHist(build_hist_nidx);
// Check whether we can use the subtraction trick to calculate the other
bool do_subtraction_trick = true;
for (auto& shard : shards_) {
do_subtraction_trick &= shard->CanDoSubtractionTrick(
nidx_parent, build_hist_nidx, subtraction_trick_nidx);
}
if (do_subtraction_trick) {
// Calculate other histogram using subtraction trick
dh::ExecuteIndexShards(
&shards_,
[&](int idx, std::unique_ptr<DeviceShard<GradientSumT>>& shard) {
shard->SubtractionTrick(nidx_parent, build_hist_nidx,
subtraction_trick_nidx);
});
} else {
// Calculate other histogram manually
dh::ExecuteIndexShards(
&shards_,
[&](int idx, std::unique_ptr<DeviceShard<GradientSumT>>& shard) {
shard->BuildHist(subtraction_trick_nidx);
});
this->AllReduceHist(subtraction_trick_nidx);
}
}
DeviceSplitCandidate EvaluateSplit(int nidx, RegTree* p_tree) {
return shards_.front()->EvaluateSplit(
nidx, *column_sampler_.GetFeatureSet(p_tree->GetDepth(nidx)),
node_value_constraints_[nidx]);
}
void InitRoot(RegTree* p_tree) {
constexpr int root_nidx = 0;
// Sum gradients
std::vector<GradientPair> tmp_sums(shards_.size());
dh::ExecuteIndexShards(
&shards_,
[&](int i, std::unique_ptr<DeviceShard<GradientSumT>>& shard) {
dh::safe_cuda(cudaSetDevice(shard->device_id_));
tmp_sums[i] = dh::SumReduction(
shard->temp_memory, shard->gpair.Data(), shard->gpair.Size());
});
GradientPair sum_gradient =
std::accumulate(tmp_sums.begin(), tmp_sums.end(), GradientPair());
rabit::Allreduce<rabit::op::Sum>((GradientPair::ValueT*)&sum_gradient, 2);
// Generate root histogram
dh::ExecuteIndexShards(
&shards_,
[&](int idx, std::unique_ptr<DeviceShard<GradientSumT>>& shard) {
shard->BuildHist(root_nidx);
});
this->AllReduceHist(root_nidx);
// Remember root stats
p_tree->Stat(root_nidx).sum_hess = sum_gradient.GetHess();
auto weight = CalcWeight(param_, sum_gradient);
p_tree->Stat(root_nidx).base_weight = weight;
(*p_tree)[root_nidx].SetLeaf(param_.learning_rate * weight);
// Store sum gradients
for (auto& shard : shards_) {
shard->node_sum_gradients[root_nidx] = sum_gradient;
}
// Initialise root constraint
node_value_constraints_.resize(p_tree->GetNodes().size());
// Generate first split
auto split = this->EvaluateSplit(root_nidx, p_tree);
qexpand_->push(
ExpandEntry(root_nidx, p_tree->GetDepth(root_nidx), split, 0));
}
void UpdatePosition(const ExpandEntry& candidate, RegTree* p_tree) {
int nidx = candidate.nid;
int left_nidx = (*p_tree)[nidx].LeftChild();
int right_nidx = (*p_tree)[nidx].RightChild();
// convert floating-point split_pt into corresponding bin_id
// split_cond = -1 indicates that split_pt is less than all known cut points
int64_t split_gidx = -1;
int64_t fidx = candidate.split.findex;
bool default_dir_left = candidate.split.dir == kLeftDir;
uint32_t fidx_begin = hmat_.row_ptr[fidx];
uint32_t fidx_end = hmat_.row_ptr[fidx + 1];
// split_gidx = i where i is the i^th bin containing split value.
for (auto i = fidx_begin; i < fidx_end; ++i) {
if (candidate.split.fvalue == hmat_.cut[i]) {
split_gidx = static_cast<int64_t>(i);
}
}
auto is_dense = info_->num_nonzero_ == info_->num_row_ * info_->num_col_;
dh::ExecuteIndexShards(
&shards_,
[&](int idx, std::unique_ptr<DeviceShard<GradientSumT>>& shard) {
shard->UpdatePosition(nidx, left_nidx, right_nidx, fidx, split_gidx,
default_dir_left, is_dense, fidx_begin,
fidx_end);
});
}
void ApplySplit(const ExpandEntry& candidate, RegTree* p_tree) {
RegTree& tree = *p_tree;
GradStats left_stats;
left_stats.Add(candidate.split.left_sum);
GradStats right_stats;
right_stats.Add(candidate.split.right_sum);
GradStats parent_sum;
parent_sum.Add(left_stats);
parent_sum.Add(right_stats);
node_value_constraints_.resize(tree.GetNodes().size());
auto base_weight = node_value_constraints_[candidate.nid].CalcWeight(param_, parent_sum);
auto left_weight =
node_value_constraints_[candidate.nid].CalcWeight(param_, left_stats)*param_.learning_rate;
auto right_weight =
node_value_constraints_[candidate.nid].CalcWeight(param_, right_stats)*param_.learning_rate;
tree.ExpandNode(candidate.nid, candidate.split.findex,
candidate.split.fvalue, candidate.split.dir == kLeftDir,
base_weight, left_weight, right_weight,
candidate.split.loss_chg, parent_sum.sum_hess);
// Set up child constraints
node_value_constraints_.resize(tree.GetNodes().size());
node_value_constraints_[candidate.nid].SetChild(
param_, tree[candidate.nid].SplitIndex(), left_stats, right_stats,
&node_value_constraints_[tree[candidate.nid].LeftChild()],
&node_value_constraints_[tree[candidate.nid].RightChild()]);
// Store sum gradients
for (auto& shard : shards_) {
shard->node_sum_gradients[tree[candidate.nid].LeftChild()] = candidate.split.left_sum;
shard->node_sum_gradients[tree[candidate.nid].RightChild()] = candidate.split.right_sum;
}
}
void UpdateTree(HostDeviceVector<GradientPair>* gpair, DMatrix* p_fmat,
RegTree* p_tree) {
auto& tree = *p_tree;
monitor_.StartCuda("InitData");
this->InitData(gpair, p_fmat);
monitor_.StopCuda("InitData");
monitor_.StartCuda("InitRoot");
this->InitRoot(p_tree);
monitor_.StopCuda("InitRoot");
auto timestamp = qexpand_->size();
auto num_leaves = 1;
while (!qexpand_->empty()) {
ExpandEntry candidate = qexpand_->top();
qexpand_->pop();
if (!candidate.IsValid(param_, num_leaves)) continue;
this->ApplySplit(candidate, p_tree);
monitor_.StartCuda("UpdatePosition");
this->UpdatePosition(candidate, p_tree);
monitor_.StopCuda("UpdatePosition");
num_leaves++;
int left_child_nidx = tree[candidate.nid].LeftChild();
int right_child_nidx = tree[candidate.nid].RightChild();
// Only create child entries if needed
if (ExpandEntry::ChildIsValid(param_, tree.GetDepth(left_child_nidx),
num_leaves)) {
monitor_.StartCuda("BuildHist");
this->BuildHistLeftRight(candidate.nid, left_child_nidx,
right_child_nidx);
monitor_.StopCuda("BuildHist");
monitor_.StartCuda("EvaluateSplits");
auto left_child_split = this->EvaluateSplit(left_child_nidx, p_tree);
auto right_child_split = this->EvaluateSplit(right_child_nidx, p_tree);
qexpand_->push(ExpandEntry(left_child_nidx,
tree.GetDepth(left_child_nidx),
left_child_split, timestamp++));
qexpand_->push(ExpandEntry(right_child_nidx,
tree.GetDepth(right_child_nidx),
right_child_split, timestamp++));
monitor_.StopCuda("EvaluateSplits");
}
}
}
bool UpdatePredictionCache(
const DMatrix* data, HostDeviceVector<bst_float>* p_out_preds) {
if (shards_.empty() || p_last_fmat_ == nullptr || p_last_fmat_ != data)
return false;
monitor_.StartCuda("UpdatePredictionCache");
p_out_preds->Reshard(dist_.Devices());
dh::ExecuteIndexShards(
&shards_,
[&](int idx, std::unique_ptr<DeviceShard<GradientSumT>>& shard) {
shard->UpdatePredictionCache(
p_out_preds->DevicePointer(shard->device_id_));
});
monitor_.StopCuda("UpdatePredictionCache");
return true;
}
struct ExpandEntry {
int nid;
int depth;
DeviceSplitCandidate split;
uint64_t timestamp;
ExpandEntry(int nid, int depth, const DeviceSplitCandidate& split,
uint64_t timestamp)
: nid(nid), depth(depth), split(split), timestamp(timestamp) {}
bool IsValid(const TrainParam& param, int num_leaves) const {
if (split.loss_chg <= kRtEps) return false;
if (split.left_sum.GetHess() == 0 || split.right_sum.GetHess() == 0)
return false;
if (param.max_depth > 0 && depth == param.max_depth) return false;
if (param.max_leaves > 0 && num_leaves == param.max_leaves) return false;
return true;
}
static bool ChildIsValid(const TrainParam& param, int depth,
int num_leaves) {
if (param.max_depth > 0 && depth >= param.max_depth) return false;
if (param.max_leaves > 0 && num_leaves >= param.max_leaves) return false;
return true;
}
friend std::ostream& operator<<(std::ostream& os, const ExpandEntry& e) {
os << "ExpandEntry: \n";
os << "nidx: " << e.nid << "\n";
os << "depth: " << e.depth << "\n";
os << "loss: " << e.split.loss_chg << "\n";
os << "left_sum: " << e.split.left_sum << "\n";
os << "right_sum: " << e.split.right_sum << "\n";
return os;
}
};
inline static bool DepthWise(ExpandEntry lhs, ExpandEntry rhs) {
if (lhs.depth == rhs.depth) {
return lhs.timestamp > rhs.timestamp; // favor small timestamp
} else {
return lhs.depth > rhs.depth; // favor small depth
}
}
inline static bool LossGuide(ExpandEntry lhs, ExpandEntry rhs) {
if (lhs.split.loss_chg == rhs.split.loss_chg) {
return lhs.timestamp > rhs.timestamp; // favor small timestamp
} else {
return lhs.split.loss_chg < rhs.split.loss_chg; // favor large loss_chg
}
}
TrainParam param_;
GPUHistMakerTrainParam hist_maker_param_;
common::HistCutMatrix hmat_;
common::GHistIndexMatrix gmat_;
MetaInfo* info_;
bool initialised_;
int n_devices_;
int n_bins_;
std::vector<std::unique_ptr<DeviceShard<GradientSumT>>> shards_;
common::ColumnSampler column_sampler_;
using ExpandQueue = std::priority_queue<ExpandEntry, std::vector<ExpandEntry>,
std::function<bool(ExpandEntry, ExpandEntry)>>;
std::unique_ptr<ExpandQueue> qexpand_;
common::Monitor monitor_;
dh::AllReducer reducer_;
std::vector<ValueConstraint> node_value_constraints_;
/*! List storing device id. */
std::vector<int> device_list_;
DMatrix* p_last_fmat_;
GPUDistribution dist_;
};
class GPUHistMaker : public TreeUpdater {
public:
void Init(
const std::vector<std::pair<std::string, std::string>>& args) override {
hist_maker_param_.InitAllowUnknown(args);
float_maker_.reset();
double_maker_.reset();
if (hist_maker_param_.single_precision_histogram) {
float_maker_.reset(new GPUHistMakerSpecialised<GradientPair>());
float_maker_->Init(args);
} else {
double_maker_.reset(new GPUHistMakerSpecialised<GradientPairPrecise>());
double_maker_->Init(args);
}
}
void Update(HostDeviceVector<GradientPair>* gpair, DMatrix* dmat,
const std::vector<RegTree*>& trees) override {
if (hist_maker_param_.single_precision_histogram) {
float_maker_->Update(gpair, dmat, trees);
} else {
double_maker_->Update(gpair, dmat, trees);
}
}
bool UpdatePredictionCache(
const DMatrix* data, HostDeviceVector<bst_float>* p_out_preds) override {
if (hist_maker_param_.single_precision_histogram) {
return float_maker_->UpdatePredictionCache(data, p_out_preds);
} else {
return double_maker_->UpdatePredictionCache(data, p_out_preds);
}
}
private:
GPUHistMakerTrainParam hist_maker_param_;
std::unique_ptr<GPUHistMakerSpecialised<GradientPair>> float_maker_;
std::unique_ptr<GPUHistMakerSpecialised<GradientPairPrecise>> double_maker_;
};
XGBOOST_REGISTER_TREE_UPDATER(GPUHistMaker, "grow_gpu_hist")
.describe("Grow tree with GPU.")
.set_body([]() { return new GPUHistMaker(); });
} // namespace tree
} // namespace xgboost