xgboost/tests/cpp/objective/test_regression_obj.cc
Dmitry Razdoburdin 43897b8296
Sycl implementation for objective functions (#9846)
---------

Co-authored-by: Dmitry Razdoburdin <>
2023-12-12 14:41:50 +08:00

126 lines
5.0 KiB
C++

/**
* Copyright 2017-2023 by XGBoost contributors
*/
#include <gtest/gtest.h>
#include <xgboost/context.h>
#include <xgboost/json.h>
#include <xgboost/objective.h>
#include "../../../src/common/linalg_op.h" // for begin, end
#include "../../../src/objective/adaptive.h"
#include "../../../src/tree/param.h" // for TrainParam
#include "../helpers.h"
#include "xgboost/base.h"
#include "xgboost/data.h"
#include "xgboost/linalg.h"
#include "test_regression_obj.h"
namespace xgboost {
void TestLinearRegressionGPair(const Context* ctx) {
std::string obj_name = "reg:squarederror";
std::vector<std::pair<std::string, std::string>> args;
std::unique_ptr<ObjFunction> obj{ObjFunction::Create(obj_name, ctx)};
obj->Configure(args);
CheckObjFunction(obj,
{0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
{0, 0, 0, 0, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1, 1, 1},
{0, 0.1f, 0.9f, 1.0f, -1.0f, -0.9f, -0.1f, 0},
{1, 1, 1, 1, 1, 1, 1, 1});
CheckObjFunction(obj,
{0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
{0, 0, 0, 0, 1, 1, 1, 1},
{}, // empty weight
{0, 0.1f, 0.9f, 1.0f, -1.0f, -0.9f, -0.1f, 0},
{1, 1, 1, 1, 1, 1, 1, 1});
ASSERT_NO_THROW(obj->DefaultEvalMetric());
}
void TestSquaredLog(const Context* ctx) {
std::string obj_name = "reg:squaredlogerror";
std::vector<std::pair<std::string, std::string>> args;
std::unique_ptr<ObjFunction> obj{ObjFunction::Create(obj_name, ctx)};
obj->Configure(args);
CheckConfigReload(obj, obj_name);
CheckObjFunction(obj,
{0.1f, 0.2f, 0.4f, 0.8f, 1.6f}, // pred
{1.0f, 1.0f, 1.0f, 1.0f, 1.0f}, // labels
{1.0f, 1.0f, 1.0f, 1.0f, 1.0f}, // weights
{-0.5435f, -0.4257f, -0.25475f, -0.05855f, 0.1009f},
{ 1.3205f, 1.0492f, 0.69215f, 0.34115f, 0.1091f});
CheckObjFunction(obj,
{0.1f, 0.2f, 0.4f, 0.8f, 1.6f}, // pred
{1.0f, 1.0f, 1.0f, 1.0f, 1.0f}, // labels
{}, // empty weights
{-0.5435f, -0.4257f, -0.25475f, -0.05855f, 0.1009f},
{ 1.3205f, 1.0492f, 0.69215f, 0.34115f, 0.1091f});
ASSERT_EQ(obj->DefaultEvalMetric(), std::string{"rmsle"});
}
void TestLogisticRegressionGPair(const Context* ctx) {
std::string obj_name = "reg:logistic";
std::vector<std::pair<std::string, std::string>> args;
std::unique_ptr<ObjFunction> obj{ObjFunction::Create(obj_name, ctx)};
obj->Configure(args);
CheckConfigReload(obj, obj_name);
CheckObjFunction(obj,
{ 0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1}, // preds
{ 0, 0, 0, 0, 1, 1, 1, 1}, // labels
{ 1, 1, 1, 1, 1, 1, 1, 1}, // weights
{ 0.5f, 0.52f, 0.71f, 0.73f, -0.5f, -0.47f, -0.28f, -0.26f}, // out_grad
{0.25f, 0.24f, 0.20f, 0.19f, 0.25f, 0.24f, 0.20f, 0.19f}); // out_hess
}
void TestLogisticRegressionBasic(const Context* ctx) {
std::string obj_name = "reg:logistic";
std::vector<std::pair<std::string, std::string>> args;
std::unique_ptr<ObjFunction> obj{ObjFunction::Create(obj_name, ctx)};
obj->Configure(args);
CheckConfigReload(obj, obj_name);
// test label validation
EXPECT_ANY_THROW(CheckObjFunction(obj, {0}, {10}, {1}, {0}, {0}))
<< "Expected error when label not in range [0,1f] for LogisticRegression";
// test ProbToMargin
EXPECT_NEAR(obj->ProbToMargin(0.1f), -2.197f, 0.01f);
EXPECT_NEAR(obj->ProbToMargin(0.5f), 0, 0.01f);
EXPECT_NEAR(obj->ProbToMargin(0.9f), 2.197f, 0.01f);
EXPECT_ANY_THROW((void)obj->ProbToMargin(10))
<< "Expected error when base_score not in range [0,1f] for LogisticRegression";
// test PredTransform
HostDeviceVector<bst_float> io_preds = {0, 0.1f, 0.5f, 0.9f, 1};
std::vector<bst_float> out_preds = {0.5f, 0.524f, 0.622f, 0.710f, 0.731f};
obj->PredTransform(&io_preds);
auto& preds = io_preds.HostVector();
for (int i = 0; i < static_cast<int>(io_preds.Size()); ++i) {
EXPECT_NEAR(preds[i], out_preds[i], 0.01f);
}
}
void TestsLogisticRawGPair(const Context* ctx) {
std::string obj_name = "binary:logitraw";
std::vector<std::pair<std::string, std::string>> args;
std::unique_ptr<ObjFunction> obj {ObjFunction::Create(obj_name, ctx)};
obj->Configure(args);
CheckObjFunction(obj,
{ 0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
{ 0, 0, 0, 0, 1, 1, 1, 1},
{ 1, 1, 1, 1, 1, 1, 1, 1},
{ 0.5f, 0.52f, 0.71f, 0.73f, -0.5f, -0.47f, -0.28f, -0.26f},
{0.25f, 0.24f, 0.20f, 0.19f, 0.25f, 0.24f, 0.20f, 0.19f});
}
} // namespace xgboost