- Use the `linalg::Matrix` for storing gradients. - New API for the custom objective. - Custom objective for multi-class/multi-target is now required to return the correct shape. - Custom objective for Python can accept arrays with any strides. (row-major, column-major)
37 lines
1012 B
Plaintext
37 lines
1012 B
Plaintext
/**
|
|
* Copyright 2018-2023, XGBoost Contributors
|
|
*/
|
|
#include <xgboost/linear_updater.h>
|
|
#include <xgboost/gbm.h>
|
|
|
|
#include "../helpers.h"
|
|
#include "test_json_io.h"
|
|
#include "../../../src/gbm/gblinear_model.h"
|
|
|
|
namespace xgboost {
|
|
|
|
TEST(Linear, GPUCoordinate) {
|
|
size_t constexpr kRows = 10;
|
|
size_t constexpr kCols = 10;
|
|
|
|
auto mat = xgboost::RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
|
|
auto ctx = MakeCUDACtx(0);
|
|
|
|
LearnerModelParam mparam{MakeMP(kCols, .5, 1)};
|
|
auto updater = std::unique_ptr<xgboost::LinearUpdater>(
|
|
xgboost::LinearUpdater::Create("gpu_coord_descent", &ctx));
|
|
updater->Configure({{"eta", "1."}});
|
|
auto gpair = linalg::Constant(&ctx, xgboost::GradientPair(-5, 1.0), mat->Info().num_row_, 1);
|
|
xgboost::gbm::GBLinearModel model{&mparam};
|
|
|
|
model.LazyInitModel();
|
|
updater->Update(&gpair, mat.get(), &model, gpair.Size());
|
|
|
|
ASSERT_EQ(model.Bias()[0], 5.0f);
|
|
}
|
|
|
|
TEST(GPUCoordinate, JsonIO) {
|
|
TestUpdaterJsonIO("gpu_coord_descent");
|
|
}
|
|
} // namespace xgboost
|