Egor Smirnov 4d6590be3c Optimize ‘hist’ for multi-core CPU (#4529)
* Initial performance optimizations for xgboost

* remove includes

* revert float->double

* fix for CI

* fix for CI

* fix for CI

* fix for CI

* fix for CI

* fix for CI

* fix for CI

* fix for CI

* fix for CI

* fix for CI

* Check existence of _mm_prefetch and __builtin_prefetch

* Fix lint

* optimizations for CPU

* appling comments in review

* add some comments, code refactoring

* fixing issues in CI

* adding runtime checks

* remove 1 extra check

* remove extra checks in BuildHist

* remove checks

* add debug info

* added debug info

* revert changes

* added comments

* Apply suggestions from code review

Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>

* apply review comments

* Remove unused function CreateNewNodes()

* Add descriptive comment on node_idx variable in QuantileHistMaker::Builder::BuildHistsBatch()
2019-06-27 11:33:49 -07:00
2019-03-13 02:25:51 +08:00
2019-05-27 13:29:28 +12:00
2018-07-10 00:42:15 -07:00
2019-04-25 20:25:43 -07:00
2017-12-01 02:58:13 -08:00
2019-04-08 21:20:15 -07:00

eXtreme Gradient Boosting

Build Status Build Status Build Status Documentation Status GitHub license CRAN Status Badge PyPI version

Community | Documentation | Resources | Contributors | Release Notes

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

License

© Contributors, 2016. Licensed under an Apache-2 license.

Contribute to XGBoost

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone. Checkout the Community Page

Reference

  • Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016
  • XGBoost originates from research project at University of Washington.

Sponsors

Become a sponsor and get a logo here. See details at Sponsoring the XGBoost Project. The funds are used to defray the cost of continuous integration and testing infrastructure (https://xgboost-ci.net).

Open Source Collective sponsors

Backers on Open Collective Sponsors on Open Collective

Sponsors

[Become a sponsor]

NVIDIA

Backers

[Become a backer]

Other sponsors

The sponsors in this list are donating cloud hours in lieu of cash donation.

Amazon Web Services

Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Readme 33 MiB
Languages
C++ 45.5%
Python 20.3%
Cuda 15.2%
R 6.8%
Scala 6.4%
Other 5.6%