xgboost/tests/python-gpu/test_gpu_updaters.py
Rory Mitchell 4cb2f7598b -Add experimental GPU algorithm for lossguided mode (#2755)
-Improved GPU algorithm unit tests
-Removed some thrust code to improve compile times
2017-10-01 00:18:35 +13:00

121 lines
4.6 KiB
Python

from __future__ import print_function
import sys
sys.path.append("../../tests/python")
import xgboost as xgb
import numpy as np
import unittest
from nose.plugins.attrib import attr
from sklearn.datasets import load_digits, load_boston, load_breast_cancer, make_regression
rng = np.random.RandomState(1994)
def non_increasing(L, tolerance):
return all((y - x) < tolerance for x, y in zip(L, L[1:]))
#Check result is always decreasing and final accuracy is within tolerance
def assert_accuracy(res, tree_method, comparison_tree_method, tolerance):
assert non_increasing(res[tree_method], tolerance)
assert np.allclose(res[tree_method][-1], res[comparison_tree_method][-1], 1e-3, 1e-2)
def train_boston(param_in, comparison_tree_method):
data = load_boston()
dtrain = xgb.DMatrix(data.data, label=data.target)
param = {}
param.update(param_in)
res_tmp = {}
res = {}
num_rounds = 10
xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res_tmp)
res[param['tree_method']] = res_tmp['train']['rmse']
param["tree_method"] = comparison_tree_method
xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res_tmp)
res[comparison_tree_method] = res_tmp['train']['rmse']
return res
def train_digits(param_in, comparison_tree_method):
data = load_digits()
dtrain = xgb.DMatrix(data.data, label=data.target)
param = {}
param['objective'] = 'multi:softmax'
param['num_class'] = 10
param.update(param_in)
res_tmp = {}
res = {}
num_rounds = 10
xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res_tmp)
res[param['tree_method']] = res_tmp['train']['merror']
param["tree_method"] = comparison_tree_method
xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res_tmp)
res[comparison_tree_method] = res_tmp['train']['merror']
return res
def train_cancer(param_in, comparison_tree_method):
data = load_breast_cancer()
dtrain = xgb.DMatrix(data.data, label=data.target)
param = {}
param['objective'] = 'binary:logistic'
param.update(param_in)
res_tmp = {}
res = {}
num_rounds = 10
xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res_tmp)
res[param['tree_method']] = res_tmp['train']['error']
param["tree_method"] = comparison_tree_method
xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res_tmp)
res[comparison_tree_method] = res_tmp['train']['error']
return res
def train_sparse(param_in, comparison_tree_method):
n = 5000
sparsity = 0.75
X, y = make_regression(n, random_state=rng)
X = np.array([[np.nan if rng.uniform(0, 1) < sparsity else x for x in x_row] for x_row in X])
dtrain = xgb.DMatrix(X, label=y)
param = {}
param.update(param_in)
res_tmp = {}
res = {}
num_rounds = 10
bst = xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res_tmp)
res[param['tree_method']] = res_tmp['train']['rmse']
param["tree_method"] = comparison_tree_method
bst = xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res_tmp)
res[comparison_tree_method] = res_tmp['train']['rmse']
return res
def assert_updater_accuracy(tree_method, comparison_tree_method, variable_param, tolerance):
param = {'tree_method': tree_method}
for k, set in variable_param.items():
for val in set:
param_tmp = param.copy()
param_tmp[k] = val
print(param_tmp, file=sys.stderr)
assert_accuracy(train_boston(param_tmp, comparison_tree_method), tree_method, comparison_tree_method, tolerance)
assert_accuracy(train_digits(param_tmp, comparison_tree_method), tree_method, comparison_tree_method, tolerance)
assert_accuracy(train_cancer(param_tmp, comparison_tree_method), tree_method, comparison_tree_method, tolerance)
assert_accuracy(train_sparse(param_tmp, comparison_tree_method), tree_method, comparison_tree_method, tolerance)
@attr('gpu')
class TestGPU(unittest.TestCase):
def test_gpu_hist(self):
variable_param = {'max_depth': [2, 6, 11], 'max_bin': [2, 16, 1024], 'n_gpus': [1, -1]}
assert_updater_accuracy('gpu_hist', 'hist', variable_param, 0.02)
def test_gpu_exact(self):
variable_param = {'max_depth': [2, 6, 15]}
assert_updater_accuracy('gpu_exact', 'exact', variable_param, 0.02)
def test_gpu_hist_experimental(self):
variable_param = {'max_depth': [2, 6], 'max_leaves': [255, 4], 'max_bin': [2, 16, 1024]}
assert_updater_accuracy('gpu_hist_experimental', 'hist', variable_param, 0.01)