xgboost/demo/distributed-training/plot_model.ipynb
AbdealiJK 6f16f0ef58 Use bst_float consistently throughout (#1824)
* Fix various typos

* Add override to functions that are overridden

gcc gives warnings about functions that are being overridden by not
being marked as oveirridden. This fixes it.

* Use bst_float consistently

Use bst_float for all the variables that involve weight,
leaf value, gradient, hessian, gain, loss_chg, predictions,
base_margin, feature values.

In some cases, when due to additions and so on the value can
take a larger value, double is used.

This ensures that type conversions are minimal and reduces loss of
precision.
2016-11-30 10:02:10 -08:00

108 lines
2.0 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# XGBoost Model Analysis\n",
"\n",
"This notebook can be used to load and analysis model learnt from all xgboost bindings, including distributed training. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"%matplotlib inline "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Please change the ```pkg_path``` and ```model_file``` to be correct path"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"pkg_path = '../../python-package/'\n",
"model_file = 's3://my-bucket/xgb-demo/model/0002.model'\n",
"sys.path.insert(0, pkg_path)\n",
"import xgboost as xgb"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Plot the Feature Importance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# plot the first two trees.\n",
"bst = xgb.Booster(model_file=model_file)\n",
"xgb.plot_importance(bst)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Plot the First Tree"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tree_id = 0\n",
"xgb.to_graphviz(bst, tree_id)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}