xgboost/R-package/R/xgb.cv.R
2016-03-27 19:22:22 -05:00

251 lines
11 KiB
R

#' Cross Validation
#'
#' The cross valudation function of xgboost
#'
#' @importFrom data.table data.table
#' @importFrom data.table as.data.table
#' @importFrom magrittr %>%
#' @importFrom data.table :=
#' @importFrom data.table rbindlist
#' @importFrom stringr str_extract_all
#' @importFrom stringr str_extract
#' @importFrom stringr str_split
#' @importFrom stringr str_replace
#' @importFrom stringr str_match
#'
#' @param params the list of parameters. Commonly used ones are:
#' \itemize{
#' \item \code{objective} objective function, common ones are
#' \itemize{
#' \item \code{reg:linear} linear regression
#' \item \code{binary:logistic} logistic regression for classification
#' }
#' \item \code{eta} step size of each boosting step
#' \item \code{max.depth} maximum depth of the tree
#' \item \code{nthread} number of thread used in training, if not set, all threads are used
#' }
#'
#' See \link{xgb.train} for further details.
#' See also demo/ for walkthrough example in R.
#' @param data takes an \code{xgb.DMatrix} or \code{Matrix} as the input.
#' @param nrounds the max number of iterations
#' @param nfold the original dataset is randomly partitioned into \code{nfold} equal size subsamples.
#' @param label option field, when data is \code{Matrix}
#' @param missing Missing is only used when input is dense matrix, pick a float
#' value that represents missing value. Sometime a data use 0 or other extreme value to represents missing values.
#' @param prediction A logical value indicating whether to return the prediction vector.
#' @param showsd \code{boolean}, whether show standard deviation of cross validation
#' @param metrics, list of evaluation metrics to be used in corss validation,
#' when it is not specified, the evaluation metric is chosen according to objective function.
#' Possible options are:
#' \itemize{
#' \item \code{error} binary classification error rate
#' \item \code{rmse} Rooted mean square error
#' \item \code{logloss} negative log-likelihood function
#' \item \code{auc} Area under curve
#' \item \code{merror} Exact matching error, used to evaluate multi-class classification
#' }
#' @param obj customized objective function. Returns gradient and second order
#' gradient with given prediction and dtrain.
#' @param feval custimized evaluation function. Returns
#' \code{list(metric='metric-name', value='metric-value')} with given
#' prediction and dtrain.
#' @param stratified \code{boolean} whether sampling of folds should be stratified by the values of labels in \code{data}
#' @param folds \code{list} provides a possibility of using a list of pre-defined CV folds (each element must be a vector of fold's indices).
#' If folds are supplied, the nfold and stratified parameters would be ignored.
#' @param verbose \code{boolean}, print the statistics during the process
#' @param print.every.n Print every N progress messages when \code{verbose>0}. Default is 1 which means all messages are printed.
#' @param early.stop.round If \code{NULL}, the early stopping function is not triggered.
#' If set to an integer \code{k}, training with a validation set will stop if the performance
#' keeps getting worse consecutively for \code{k} rounds.
#' @param maximize If \code{feval} and \code{early.stop.round} are set, then \code{maximize} must be set as well.
#' \code{maximize=TRUE} means the larger the evaluation score the better.
#'
#' @param ... other parameters to pass to \code{params}.
#'
#' @return
#' If \code{prediction = TRUE}, a list with the following elements is returned:
#' \itemize{
#' \item \code{dt} a \code{data.table} with each mean and standard deviation stat for training set and test set
#' \item \code{pred} an array or matrix (for multiclass classification) with predictions for each CV-fold for the model having been trained on the data in all other folds.
#' }
#'
#' If \code{prediction = FALSE}, just a \code{data.table} with each mean and standard deviation stat for training set and test set is returned.
#'
#' @details
#' The original sample is randomly partitioned into \code{nfold} equal size subsamples.
#'
#' Of the \code{nfold} subsamples, a single subsample is retained as the validation data for testing the model, and the remaining \code{nfold - 1} subsamples are used as training data.
#'
#' The cross-validation process is then repeated \code{nrounds} times, with each of the \code{nfold} subsamples used exactly once as the validation data.
#'
#' All observations are used for both training and validation.
#'
#' Adapted from \url{http://en.wikipedia.org/wiki/Cross-validation_\%28statistics\%29#k-fold_cross-validation}
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
#' history <- xgb.cv(data = dtrain, nround=3, nthread = 2, nfold = 5, metrics=list("rmse","auc"),
#' max.depth =3, eta = 1, objective = "binary:logistic")
#' print(history)
#' @export
xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing = NA,
prediction = FALSE, showsd = TRUE, metrics=list(),
obj = NULL, feval = NULL, stratified = TRUE, folds = NULL, verbose = T, print.every.n=1L,
early.stop.round = NULL, maximize = NULL, ...) {
if (typeof(params) != "list") {
stop("xgb.cv: first argument params must be list")
}
if(!is.null(folds)) {
if(class(folds) != "list" | length(folds) < 2) {
stop("folds must be a list with 2 or more elements that are vectors of indices for each CV-fold")
}
nfold <- length(folds)
}
if (nfold <= 1) {
stop("nfold must be bigger than 1")
}
dtrain <- xgb.get.DMatrix(data, label, missing)
dot.params <- list(...)
nms.params <- names(params)
nms.dot.params <- names(dot.params)
if (length(intersect(nms.params,nms.dot.params)) > 0)
stop("Duplicated defined term in parameters. Please check your list of params.")
params <- append(params, dot.params)
params <- append(params, list(silent=1))
for (mc in metrics) {
params <- append(params, list("eval_metric"=mc))
}
# customized objective and evaluation metric interface
if (!is.null(params$objective) && !is.null(obj))
stop("xgb.cv: cannot assign two different objectives")
if (!is.null(params$objective))
if (class(params$objective) == 'function') {
obj <- params$objective
params[['objective']] <- NULL
}
# if (!is.null(params$eval_metric) && !is.null(feval))
# stop("xgb.cv: cannot assign two different evaluation metrics")
if (!is.null(params$eval_metric))
if (class(params$eval_metric) == 'function') {
feval <- params$eval_metric
params[['eval_metric']] <- NULL
}
# Early Stopping
if (!is.null(early.stop.round)){
if (!is.null(feval) && is.null(maximize))
stop('Please set maximize to note whether the model is maximizing the evaluation or not.')
if (is.null(maximize) && is.null(params$eval_metric))
stop('Please set maximize to note whether the model is maximizing the evaluation or not.')
if (is.null(maximize))
{
if (params$eval_metric %in% c('rmse','logloss','error','merror','mlogloss')) {
maximize <- FALSE
} else {
maximize <- TRUE
}
}
if (maximize) {
bestScore <- 0
} else {
bestScore <- Inf
}
bestInd <- 0
earlyStopflag <- FALSE
if (length(metrics) > 1)
warning('Only the first metric is used for early stopping process.')
}
xgb_folds <- xgb.cv.mknfold(dtrain, nfold, params, stratified, folds)
obj_type <- params[['objective']]
mat_pred <- FALSE
if (!is.null(obj_type) && obj_type == 'multi:softprob')
{
num_class <- params[['num_class']]
if (is.null(num_class))
stop('must set num_class to use softmax')
predictValues <- matrix(0, nrow(dtrain), num_class)
mat_pred <- TRUE
}
else
predictValues <- rep(0, nrow(dtrain))
history <- c()
print.every.n <- max(as.integer(print.every.n), 1L)
for (i in 1:nrounds) {
msg <- list()
for (k in 1:nfold) {
fd <- xgb_folds[[k]]
succ <- xgb.iter.update(fd$booster, fd$dtrain, i - 1, obj)
msg[[k]] <- xgb.iter.eval(fd$booster, fd$watchlist, i - 1, feval) %>% str_split("\t") %>% .[[1]]
}
ret <- xgb.cv.aggcv(msg, showsd)
history <- c(history, ret)
if(verbose)
if (0 == (i - 1L) %% print.every.n)
cat(ret, "\n", sep="")
# early_Stopping
if (!is.null(early.stop.round)){
score <- strsplit(ret,'\\s+')[[1]][1 + length(metrics) + 2]
score <- strsplit(score,'\\+|:')[[1]][[2]]
score <- as.numeric(score)
if ( (maximize && score > bestScore) || (!maximize && score < bestScore)) {
bestScore <- score
bestInd <- i
} else {
if (i - bestInd >= early.stop.round) {
earlyStopflag <- TRUE
cat('Stopping. Best iteration:', bestInd, '\n')
break
}
}
}
}
if (prediction) {
for (k in 1:nfold) {
fd <- xgb_folds[[k]]
if (!is.null(early.stop.round) && earlyStopflag) {
res <- xgb.iter.eval(fd$booster, fd$watchlist, bestInd - 1, feval, prediction)
} else {
res <- xgb.iter.eval(fd$booster, fd$watchlist, nrounds - 1, feval, prediction)
}
if (mat_pred) {
pred_mat <- matrix(res[[2]],num_class,length(fd$index))
predictValues[fd$index,] <- t(pred_mat)
} else {
predictValues[fd$index] <- res[[2]]
}
}
}
colnames <- str_split(string = history[1], pattern = "\t")[[1]] %>% .[2:length(.)] %>% str_extract(".*:") %>% str_replace(":","") %>% str_replace("-", ".")
colnamesMean <- paste(colnames, "mean")
if(showsd) colnamesStd <- paste(colnames, "std")
colnames <- c()
if(showsd) for(i in 1:length(colnamesMean)) colnames <- c(colnames, colnamesMean[i], colnamesStd[i])
else colnames <- colnamesMean
type <- rep(x = "numeric", times = length(colnames))
dt <- utils::read.table(text = "", colClasses = type, col.names = colnames) %>% as.data.table
split <- str_split(string = history, pattern = "\t")
for(line in split) dt <- line[2:length(line)] %>% str_extract_all(pattern = "\\d*\\.+\\d*") %>% unlist %>% as.numeric %>% as.list %>% {rbindlist( list( dt, .), use.names = F, fill = F)}
if (prediction) {
return( list( dt = dt,pred = predictValues))
}
return(dt)
}
# Avoid error messages during CRAN check.
# The reason is that these variables are never declared
# They are mainly column names inferred by Data.table...
globalVariables(".")