xgboost/booster/tree/xgboost_svdf_tree.hpp

429 lines
20 KiB
C++

#ifndef _XGBOOST_APEX_TREE_HPP_
#define _XGBOOST_APEX_TREE_HPP_
/*!
* \file xgboost_svdf_tree.hpp
* \brief implementation of regression tree constructor, with layerwise support
* this file is adapted from GBRT implementation in SVDFeature project
* \author Tianqi Chen: tqchen@apex.sjtu.edu.cn, tianqi.tchen@gmail.com
*/
#include <algorithm>
#include "xgboost_tree_model.h"
#include "../../utils/xgboost_random.h"
#include "../../utils/xgboost_matrix_csr.h"
namespace xgboost{
namespace booster{
inline void assert_sorted( unsigned *idset, int len ){
if( !rt_debug || !check_bug ) return;
for( int i = 1; i < len; i ++ ){
utils::Assert( idset[i-1] < idset[i], "idset not sorted" );
}
}
};
namespace booster{
// selecter of rtree to find the suitable candidate
class RTSelecter{
public:
struct Entry{
float loss_chg;
size_t start;
int len;
unsigned sindex;
float split_value;
Entry(){}
Entry( float loss_chg, size_t start, int len, unsigned split_index, float split_value, bool default_left ){
this->loss_chg = loss_chg;
this->start = start;
this->len = len;
if( default_left ) split_index |= (1U << 31);
this->sindex = split_index;
this->split_value = split_value;
}
inline unsigned split_index( void ) const{
return sindex & ( (1U<<31) - 1U );
}
inline bool default_left( void ) const{
return (sindex >> 31) != 0;
}
};
private:
Entry best_entry;
const TreeParamTrain &param;
public:
RTSelecter( const TreeParamTrain &p ):param( p ){
memset( &best_entry, 0, sizeof(best_entry) );
best_entry.loss_chg = 0.0f;
}
inline void push_back( const Entry &e ){
if( e.loss_chg > best_entry.loss_chg ) best_entry = e;
}
inline const Entry & select( void ){
return best_entry;
}
};
// updater of rtree, allows the parameters to be stored inside, key solver
template<typename FMatrix>
class RTreeUpdater{
protected:
// training task, element of single task
struct Task{
// node id in tree
int nid;
// idset pointer, instance id in [idset,idset+len)
unsigned *idset;
// length of idset
unsigned len;
// base_weight of parent
float parent_base_weight;
Task(){}
Task( int nid, unsigned *idset, unsigned len, float pweight = 0.0f ){
this->nid = nid;
this->idset = idset;
this->len = len;
this->parent_base_weight = pweight;
}
};
// sparse column entry
struct SCEntry{
// feature value
float fvalue;
// row index in grad
unsigned rindex;
SCEntry(){}
SCEntry( float fvalue, unsigned rindex ){
this->fvalue = fvalue; this->rindex = rindex;
}
inline bool operator<( const SCEntry &p ) const{
return fvalue < p.fvalue;
}
};
private:
// training parameter
const TreeParamTrain &param;
// parameters, reference
RegTree &tree;
std::vector<float> &grad;
std::vector<float> &hess;
const FMatrix &smat;
const std::vector<unsigned> &group_id;
private:
// maximum depth up to now
int max_depth;
// number of nodes being pruned
int num_pruned;
// stack to store current task
std::vector<Task> task_stack;
// temporal space for index set
std::vector<unsigned> idset;
private:
// task management: NOTE DFS here
inline void add_task( Task tsk ){
task_stack.push_back( tsk );
}
inline bool next_task( Task &tsk ){
if( task_stack.size() == 0 ) return false;
tsk = task_stack.back();
task_stack.pop_back();
return true;
}
private:
// try to prune off current leaf, return true if successful
inline void try_prune_leaf( int nid, int depth ){
if( tree[ nid ].is_root() ) return;
int pid = tree[ nid ].parent();
RegTree::NodeStat &s = tree.stat( pid );
s.leaf_child_cnt ++;
if( s.leaf_child_cnt >= 2 && param.need_prune( s.loss_chg, depth - 1 ) ){
// need to be pruned
tree.ChangeToLeaf( pid, param.learning_rate * s.base_weight );
// add statistics to number of nodes pruned
num_pruned += 2;
// tail recursion
this->try_prune_leaf( pid, depth - 1 );
}
}
// make leaf for current node :)
inline void make_leaf( Task tsk, double sum_grad, double sum_hess, bool compute ){
for( unsigned i = 0; i < tsk.len; i ++ ){
const unsigned ridx = tsk.idset[i];
if( compute ){
sum_grad += grad[ ridx ];
sum_hess += hess[ ridx ];
}
}
tree[ tsk.nid ].set_leaf( param.learning_rate * param.CalcWeight( sum_grad, sum_hess, tsk.parent_base_weight ) );
this->try_prune_leaf( tsk.nid, tree.GetDepth( tsk.nid ) );
}
private:
// make split for current task, re-arrange positions in idset
inline void make_split( Task tsk, const SCEntry *entry, int num, float loss_chg, double base_weight ){
// before split, first prepare statistics
RegTree::NodeStat &s = tree.stat( tsk.nid );
s.loss_chg = loss_chg;
s.leaf_child_cnt = 0;
s.base_weight = static_cast<float>( base_weight );
// add childs to current node
tree.AddChilds( tsk.nid );
// assert that idset is sorted
assert_sorted( tsk.idset, tsk.len );
// use merge sort style to get the solution
std::vector<unsigned> qset;
for( int i = 0; i < num; i ++ ){
qset.push_back( entry[i].rindex );
}
std::sort( qset.begin(), qset.end() );
// do merge sort style, make the other set, remove elements in qset
for( unsigned i = 0, top = 0; i < tsk.len; i ++ ){
if( top < qset.size() ){
if( tsk.idset[ i ] != qset[ top ] ){
tsk.idset[ i - top ] = tsk.idset[ i ];
}else{
top ++;
}
}else{
tsk.idset[ i - qset.size() ] = tsk.idset[ i ];
}
}
// get two parts
RegTree::Node &n = tree[ tsk.nid ];
Task def_part( n.default_left() ? n.cleft() : n.cright(), tsk.idset, tsk.len - qset.size(), s.base_weight );
Task spl_part( n.default_left() ? n.cright(): n.cleft() , tsk.idset + def_part.len, qset.size(), s.base_weight );
// fill back split part
for( unsigned i = 0; i < spl_part.len; i ++ ){
spl_part.idset[ i ] = qset[ i ];
}
// add tasks to the queue
this->add_task( def_part );
this->add_task( spl_part );
}
// enumerate split point of the tree
inline void enumerate_split( RTSelecter &sglobal, int tlen,
double rsum_grad, double rsum_hess, double root_cost,
const SCEntry *entry, size_t start, size_t end,
int findex, float parent_base_weight ){
// local selecter
RTSelecter slocal( param );
if( param.default_direction != 1 ){
// forward process, default right
double csum_grad = 0.0, csum_hess = 0.0;
for( size_t j = start; j < end; j ++ ){
const unsigned ridx = entry[ j ].rindex;
csum_grad += grad[ ridx ];
csum_hess += hess[ ridx ];
// check for split
if( j == end - 1 || entry[j].fvalue + rt_2eps < entry[ j + 1 ].fvalue ){
if( csum_hess < param.min_child_weight ) continue;
const double dsum_hess = rsum_hess - csum_hess;
if( dsum_hess < param.min_child_weight ) break;
// change of loss
double loss_chg =
param.CalcCost( csum_grad, csum_hess, parent_base_weight ) +
param.CalcCost( rsum_grad - csum_grad, dsum_hess, parent_base_weight ) - root_cost;
const int clen = static_cast<int>( j + 1 - start );
// add candidate to selecter
slocal.push_back( RTSelecter::Entry( loss_chg, start, clen, findex,
j == end - 1 ? entry[j].fvalue + rt_eps : 0.5 * (entry[j].fvalue+entry[j+1].fvalue),
false ) );
}
}
}
if( param.default_direction != 2 ){
// backward process, default left
double csum_grad = 0.0, csum_hess = 0.0;
for( size_t j = end; j > start; j -- ){
const unsigned ridx = entry[ j - 1 ].rindex;
csum_grad += grad[ ridx ];
csum_hess += hess[ ridx ];
// check for split
if( j == start + 1 || entry[ j - 2 ].fvalue + rt_2eps < entry[ j - 1 ].fvalue ){
if( csum_hess < param.min_child_weight ) continue;
const double dsum_hess = rsum_hess - csum_hess;
if( dsum_hess < param.min_child_weight ) break;
double loss_chg = param.CalcCost( csum_grad, csum_hess, parent_base_weight ) +
param.CalcCost( rsum_grad - csum_grad, dsum_hess, parent_base_weight ) - root_cost;
const int clen = static_cast<int>( end - j + 1 );
// add candidate to selecter
slocal.push_back( RTSelecter::Entry( loss_chg, j - 1, clen, findex,
j == start + 1 ? entry[j-1].fvalue - rt_eps : 0.5 * (entry[j-2].fvalue + entry[j-1].fvalue),
true ) );
}
}
}
sglobal.push_back( slocal.select() );
}
private:
// temporal storage for expand column major
std::vector<size_t> tmp_rptr;
// find split for current task, another implementation of expand in column major manner
// should be more memory frugal, avoid global sorting across feature
inline void expand( Task tsk ){
// assert that idset is sorted
// if reach maximum depth, make leaf from current node
int depth = tree.GetDepth( tsk.nid );
// update statistiss
if( depth > max_depth ) max_depth = depth;
// if bigger than max depth
if( depth >= param.max_depth ){
this->make_leaf( tsk, 0.0, 0.0, true ); return;
}
// convert to column major CSR format
const int nrows = tree.param.num_feature;
if( tmp_rptr.size() == 0 ){
// initialize tmp storage in first usage
tmp_rptr.resize( nrows + 1 );
std::fill( tmp_rptr.begin(), tmp_rptr.end(), 0 );
}
// records the columns
std::vector<SCEntry> entry;
// records the active features
std::vector<size_t> aclist;
utils::SparseCSRMBuilder<SCEntry,true> builder( tmp_rptr, entry, aclist );
builder.InitBudget( nrows );
// statistics of root
double rsum_grad = 0.0, rsum_hess = 0.0;
for( unsigned i = 0; i < tsk.len; i ++ ){
const unsigned ridx = tsk.idset[i];
rsum_grad += grad[ ridx ];
rsum_hess += hess[ ridx ];
for( typename FMatrix::RowIter it = smat.GetRow(ridx); it.Next(); ){
builder.AddBudget( it.findex() );
}
}
// if minimum split weight is not meet
if( param.cannot_split( rsum_hess, depth ) ){
this->make_leaf( tsk, rsum_grad, rsum_hess, false ); builder.Cleanup(); return;
}
builder.InitStorage();
for( unsigned i = 0; i < tsk.len; i ++ ){
const unsigned ridx = tsk.idset[i];
for( typename FMatrix::RowIter it = smat.GetRow(ridx); it.Next(); ){
builder.PushElem( it.findex(), SCEntry( it.fvalue(), ridx ) );
}
}
// --- end of building column major matrix ---
// after this point, tmp_rptr and entry is ready to use
// global selecter
RTSelecter sglobal( param );
// cost root
const double root_cost = param.CalcRootCost( rsum_grad, rsum_hess );
// KEY: layerwise, weight of current node if it is leaf
const double base_weight = param.CalcWeight( rsum_grad, rsum_hess, tsk.parent_base_weight );
// enumerate feature index
for( size_t i = 0; i < aclist.size(); i ++ ){
int findex = static_cast<int>( aclist[i] );
size_t start = tmp_rptr[ findex ];
size_t end = tmp_rptr[ findex + 1 ];
utils::Assert( start < end, "bug" );
// local sort can be faster when the features are sparse
std::sort( entry.begin() + start, entry.begin() + end );
// local selecter
this->enumerate_split( sglobal, tsk.len,
rsum_grad, rsum_hess, root_cost,
&entry[0], start, end, findex, base_weight );
}
// Cleanup tmp_rptr for next use
builder.Cleanup();
// get the best solution
const RTSelecter::Entry &e = sglobal.select();
// allowed to split
if( e.loss_chg > rt_eps ){
// add splits
tree[ tsk.nid ].set_split( e.split_index(), e.split_value, e.default_left() );
// re-arrange idset, push tasks
this->make_split( tsk, &entry[ e.start ], e.len, e.loss_chg, base_weight );
}else{
// make leaf if we didn't meet requirement
this->make_leaf( tsk, rsum_grad, rsum_hess, false );
}
}
private:
// initialize the tasks
inline void init_tasks( size_t ngrads ){
// add group partition if necessary
if( group_id.size() == 0 ){
if( param.subsample > 1.0f - 1e-6f ){
idset.resize( 0 );
for( size_t i = 0; i < ngrads; i ++ ){
if( hess[i] < 0.0f ) continue;
idset.push_back( (unsigned)i );
}
}else{
idset.resize( 0 );
for( size_t i = 0; i < ngrads; i ++ ){
if( random::SampleBinary( param.subsample ) != 0 ){
idset.push_back( (unsigned)i );
}
}
}
this->add_task( Task( 0, &idset[0], idset.size() ) ); return;
}
utils::Assert( group_id.size() == ngrads, "number of groups must be exact" );
{// new method for grouping, use CSR builder
std::vector<size_t> rptr;
utils::SparseCSRMBuilder<unsigned> builder( rptr, idset );
builder.InitBudget( tree.param.num_roots );
for( size_t i = 0; i < group_id.size(); i ++ ){
// drop invalid elements
if( hess[ i ] < 0.0f ) continue;
utils::Assert( group_id[ i ] < (unsigned)tree.param.num_roots,
"group id exceed number of roots" );
builder.AddBudget( group_id[ i ] );
}
builder.InitStorage();
for( size_t i = 0; i < group_id.size(); i ++ ){
// drop invalid elements
if( hess[ i ] < 0.0f ) continue;
builder.PushElem( group_id[ i ], static_cast<unsigned>(i) );
}
for( size_t i = 1; i < rptr.size(); i ++ ){
const size_t start = rptr[ i - 1 ], end = rptr[ i ];
if( start < end ){
this->add_task( Task( i - 1, &idset[ start ], end - start ) );
}
}
}
}
public:
RTreeUpdater( const TreeParamTrain &pparam,
RegTree &ptree,
std::vector<float> &pgrad,
std::vector<float> &phess,
const FMatrix &psmat,
const std::vector<unsigned> &pgroup_id ):
param( pparam ), tree( ptree ), grad( pgrad ), hess( phess ),
smat( psmat ), group_id( pgroup_id ){
}
inline int do_boost( int &num_pruned ){
this->init_tasks( grad.size() );
this->max_depth = 0;
this->num_pruned = 0;
Task tsk;
while( this->next_task( tsk ) ){
this->expand( tsk );
}
num_pruned = this->num_pruned;
return max_depth;
}
};
};
};
#endif