593 lines
22 KiB
R
593 lines
22 KiB
R
context('Test helper functions')
|
|
|
|
VCD_AVAILABLE <- requireNamespace("vcd", quietly = TRUE)
|
|
.skip_if_vcd_not_available <- function() {
|
|
if (!VCD_AVAILABLE) {
|
|
testthat::skip("Optional testing dependency 'vcd' not found.")
|
|
}
|
|
}
|
|
|
|
float_tolerance <- 5e-6
|
|
|
|
# disable some tests for 32-bit environment
|
|
flag_32bit <- .Machine$sizeof.pointer != 8
|
|
|
|
set.seed(1982)
|
|
|
|
nrounds <- 12
|
|
if (isTRUE(VCD_AVAILABLE)) {
|
|
data(Arthritis, package = "vcd")
|
|
df <- data.table::data.table(Arthritis, keep.rownames = FALSE)
|
|
df[, AgeDiscret := as.factor(round(Age / 10, 0))]
|
|
df[, AgeCat := as.factor(ifelse(Age > 30, "Old", "Young"))]
|
|
df[, ID := NULL]
|
|
sparse_matrix <- Matrix::sparse.model.matrix(Improved~.-1, data = df) # nolint
|
|
label <- df[, ifelse(Improved == "Marked", 1, 0)]
|
|
|
|
# binary
|
|
bst.Tree <- xgb.train(data = xgb.DMatrix(sparse_matrix, label = label), max_depth = 9,
|
|
eta = 1, nthread = 2, nrounds = nrounds, verbose = 0,
|
|
objective = "binary:logistic", booster = "gbtree",
|
|
base_score = 0.5)
|
|
|
|
bst.GLM <- xgb.train(data = xgb.DMatrix(sparse_matrix, label = label),
|
|
eta = 1, nthread = 1, nrounds = nrounds, verbose = 0,
|
|
objective = "binary:logistic", booster = "gblinear",
|
|
base_score = 0.5)
|
|
|
|
feature.names <- colnames(sparse_matrix)
|
|
}
|
|
|
|
# multiclass
|
|
mlabel <- as.numeric(iris$Species) - 1
|
|
nclass <- 3
|
|
mbst.Tree <- xgb.train(data = xgb.DMatrix(as.matrix(iris[, -5]), label = mlabel), verbose = 0,
|
|
max_depth = 3, eta = 0.5, nthread = 2, nrounds = nrounds,
|
|
objective = "multi:softprob", num_class = nclass, base_score = 0)
|
|
|
|
mbst.GLM <- xgb.train(data = xgb.DMatrix(as.matrix(iris[, -5]), label = mlabel), verbose = 0,
|
|
booster = "gblinear", eta = 0.1, nthread = 1, nrounds = nrounds,
|
|
objective = "multi:softprob", num_class = nclass, base_score = 0)
|
|
|
|
# without feature names
|
|
bst.Tree.unnamed <- xgb.copy.Booster(bst.Tree)
|
|
setinfo(bst.Tree.unnamed, "feature_name", NULL)
|
|
|
|
test_that("xgb.dump works", {
|
|
.skip_if_vcd_not_available()
|
|
if (!flag_32bit)
|
|
expect_length(xgb.dump(bst.Tree), 200)
|
|
dump_file <- file.path(tempdir(), 'xgb.model.dump')
|
|
expect_true(xgb.dump(bst.Tree, dump_file, with_stats = TRUE))
|
|
expect_true(file.exists(dump_file))
|
|
expect_gt(file.size(dump_file), 8000)
|
|
|
|
# JSON format
|
|
dmp <- xgb.dump(bst.Tree, dump_format = "json")
|
|
expect_length(dmp, 1)
|
|
if (!flag_32bit)
|
|
expect_length(grep('nodeid', strsplit(dmp, '\n', fixed = TRUE)[[1]], fixed = TRUE), 188)
|
|
})
|
|
|
|
test_that("xgb.dump works for gblinear", {
|
|
.skip_if_vcd_not_available()
|
|
expect_length(xgb.dump(bst.GLM), 14)
|
|
# also make sure that it works properly for a sparse model where some coefficients
|
|
# are 0 from setting large L1 regularization:
|
|
bst.GLM.sp <- xgb.train(data = xgb.DMatrix(sparse_matrix, label = label), eta = 1,
|
|
nthread = 2, nrounds = 1,
|
|
alpha = 2, objective = "binary:logistic", booster = "gblinear")
|
|
d.sp <- xgb.dump(bst.GLM.sp)
|
|
expect_length(d.sp, 14)
|
|
expect_gt(sum(d.sp == "0"), 0)
|
|
|
|
# JSON format
|
|
dmp <- xgb.dump(bst.GLM.sp, dump_format = "json")
|
|
expect_length(dmp, 1)
|
|
expect_length(grep('\\d', strsplit(dmp, '\n', fixed = TRUE)[[1]]), 11)
|
|
})
|
|
|
|
test_that("predict leafs works", {
|
|
.skip_if_vcd_not_available()
|
|
# no error for gbtree
|
|
expect_error(pred_leaf <- predict(bst.Tree, sparse_matrix, predleaf = TRUE), regexp = NA)
|
|
expect_equal(dim(pred_leaf), c(nrow(sparse_matrix), nrounds))
|
|
# error for gblinear
|
|
expect_error(predict(bst.GLM, sparse_matrix, predleaf = TRUE))
|
|
})
|
|
|
|
test_that("predict feature contributions works", {
|
|
.skip_if_vcd_not_available()
|
|
# gbtree binary classifier
|
|
expect_error(pred_contr <- predict(bst.Tree, sparse_matrix, predcontrib = TRUE), regexp = NA)
|
|
expect_equal(dim(pred_contr), c(nrow(sparse_matrix), ncol(sparse_matrix) + 1))
|
|
expect_equal(colnames(pred_contr), c(colnames(sparse_matrix), "(Intercept)"))
|
|
pred <- predict(bst.Tree, sparse_matrix, outputmargin = TRUE)
|
|
expect_lt(max(abs(rowSums(pred_contr) - pred)), 1e-5)
|
|
# must work with data that has no column names
|
|
X <- sparse_matrix
|
|
colnames(X) <- NULL
|
|
expect_error(pred_contr_ <- predict(bst.Tree, X, predcontrib = TRUE), regexp = NA)
|
|
expect_equal(pred_contr, pred_contr_, check.attributes = FALSE,
|
|
tolerance = float_tolerance)
|
|
|
|
# gbtree binary classifier (approximate method)
|
|
expect_error(pred_contr <- predict(bst.Tree, sparse_matrix, predcontrib = TRUE, approxcontrib = TRUE), regexp = NA)
|
|
expect_equal(dim(pred_contr), c(nrow(sparse_matrix), ncol(sparse_matrix) + 1))
|
|
expect_equal(colnames(pred_contr), c(colnames(sparse_matrix), "(Intercept)"))
|
|
pred <- predict(bst.Tree, sparse_matrix, outputmargin = TRUE)
|
|
expect_lt(max(abs(rowSums(pred_contr) - pred)), 1e-5)
|
|
|
|
# gblinear binary classifier
|
|
expect_error(pred_contr <- predict(bst.GLM, sparse_matrix, predcontrib = TRUE), regexp = NA)
|
|
expect_equal(dim(pred_contr), c(nrow(sparse_matrix), ncol(sparse_matrix) + 1))
|
|
expect_equal(colnames(pred_contr), c(colnames(sparse_matrix), "(Intercept)"))
|
|
pred <- predict(bst.GLM, sparse_matrix, outputmargin = TRUE)
|
|
expect_lt(max(abs(rowSums(pred_contr) - pred)), 1e-5)
|
|
# manual calculation of linear terms
|
|
coefs <- as.numeric(xgb.dump(bst.GLM)[-c(1, 2, 4)])
|
|
coefs <- c(coefs[-1], coefs[1]) # intercept must be the last
|
|
pred_contr_manual <- sweep(cbind(sparse_matrix, 1), 2, coefs, FUN = "*")
|
|
expect_equal(as.numeric(pred_contr), as.numeric(pred_contr_manual),
|
|
tolerance = float_tolerance)
|
|
|
|
# gbtree multiclass
|
|
pred <- predict(mbst.Tree, as.matrix(iris[, -5]), outputmargin = TRUE, reshape = TRUE)
|
|
pred_contr <- predict(mbst.Tree, as.matrix(iris[, -5]), predcontrib = TRUE)
|
|
expect_is(pred_contr, "list")
|
|
expect_length(pred_contr, 3)
|
|
for (g in seq_along(pred_contr)) {
|
|
expect_equal(colnames(pred_contr[[g]]), c(colnames(iris[, -5]), "(Intercept)"))
|
|
expect_lt(max(abs(rowSums(pred_contr[[g]]) - pred[, g])), 1e-5)
|
|
}
|
|
|
|
# gblinear multiclass (set base_score = 0, which is base margin in multiclass)
|
|
pred <- predict(mbst.GLM, as.matrix(iris[, -5]), outputmargin = TRUE, reshape = TRUE)
|
|
pred_contr <- predict(mbst.GLM, as.matrix(iris[, -5]), predcontrib = TRUE)
|
|
expect_length(pred_contr, 3)
|
|
coefs_all <- matrix(
|
|
data = as.numeric(xgb.dump(mbst.GLM)[-c(1, 2, 6)]),
|
|
ncol = 3,
|
|
byrow = TRUE
|
|
)
|
|
for (g in seq_along(pred_contr)) {
|
|
expect_equal(colnames(pred_contr[[g]]), c(colnames(iris[, -5]), "(Intercept)"))
|
|
expect_lt(max(abs(rowSums(pred_contr[[g]]) - pred[, g])), float_tolerance)
|
|
# manual calculation of linear terms
|
|
coefs <- c(coefs_all[-1, g], coefs_all[1, g]) # intercept needs to be the last
|
|
pred_contr_manual <- sweep(as.matrix(cbind(iris[, -5], 1)), 2, coefs, FUN = "*")
|
|
expect_equal(as.numeric(pred_contr[[g]]), as.numeric(pred_contr_manual),
|
|
tolerance = float_tolerance)
|
|
}
|
|
})
|
|
|
|
test_that("SHAPs sum to predictions, with or without DART", {
|
|
d <- cbind(
|
|
x1 = rnorm(100),
|
|
x2 = rnorm(100),
|
|
x3 = rnorm(100))
|
|
y <- d[, "x1"] + d[, "x2"]^2 +
|
|
ifelse(d[, "x3"] > .5, d[, "x3"]^2, 2^d[, "x3"]) +
|
|
rnorm(100)
|
|
nrounds <- 30
|
|
|
|
for (booster in list("gbtree", "dart")) {
|
|
fit <- xgb.train(
|
|
params = c(
|
|
list(
|
|
nthread = 2,
|
|
booster = booster,
|
|
objective = "reg:squarederror",
|
|
eval_metric = "rmse"),
|
|
if (booster == "dart")
|
|
list(rate_drop = .01, one_drop = TRUE)),
|
|
data = xgb.DMatrix(d, label = y),
|
|
nrounds = nrounds)
|
|
|
|
pr <- function(...) {
|
|
predict(fit, newdata = d, ...)
|
|
}
|
|
pred <- pr()
|
|
shap <- pr(predcontrib = TRUE)
|
|
shapi <- pr(predinteraction = TRUE)
|
|
tol <- 1e-5
|
|
|
|
expect_equal(rowSums(shap), pred, tol = tol)
|
|
expect_equal(rowSums(shapi), pred, tol = tol)
|
|
for (i in seq_len(nrow(d)))
|
|
for (f in list(rowSums, colSums))
|
|
expect_equal(f(shapi[i, , ]), shap[i, ], tol = tol)
|
|
}
|
|
})
|
|
|
|
test_that("xgb-attribute functionality", {
|
|
.skip_if_vcd_not_available()
|
|
val <- "my attribute value"
|
|
list.val <- list(my_attr = val, a = 123, b = 'ok')
|
|
list.ch <- list.val[order(names(list.val))]
|
|
list.ch <- lapply(list.ch, as.character)
|
|
# note: iter is 0-index in xgb attributes
|
|
list.default <- list()
|
|
list.ch <- c(list.ch, list.default)
|
|
# proper input:
|
|
expect_error(xgb.attr(bst.Tree, NULL))
|
|
expect_error(xgb.attr(val, val))
|
|
# set & get:
|
|
expect_null(xgb.attr(bst.Tree, "asdf"))
|
|
expect_equal(xgb.attributes(bst.Tree), list.default)
|
|
bst.Tree.copy <- xgb.copy.Booster(bst.Tree)
|
|
xgb.attr(bst.Tree.copy, "my_attr") <- val
|
|
expect_equal(xgb.attr(bst.Tree.copy, "my_attr"), val)
|
|
xgb.attributes(bst.Tree.copy) <- list.val
|
|
expect_equal(xgb.attributes(bst.Tree.copy), list.ch)
|
|
# serializing:
|
|
fname <- file.path(tempdir(), "xgb.ubj")
|
|
xgb.save(bst.Tree.copy, fname)
|
|
bst <- xgb.load(fname)
|
|
expect_equal(xgb.attr(bst, "my_attr"), val)
|
|
expect_equal(xgb.attributes(bst), list.ch)
|
|
# deletion:
|
|
xgb.attr(bst, "my_attr") <- NULL
|
|
expect_null(xgb.attr(bst, "my_attr"))
|
|
expect_equal(xgb.attributes(bst), list.ch[c("a", "b")])
|
|
xgb.attributes(bst) <- list(a = NULL, b = NULL)
|
|
expect_equal(xgb.attributes(bst), list.default)
|
|
xgb.attributes(bst) <- list(niter = NULL)
|
|
expect_equal(xgb.attributes(bst), list())
|
|
})
|
|
|
|
if (grepl('Windows', Sys.info()[['sysname']], fixed = TRUE) ||
|
|
grepl('Linux', Sys.info()[['sysname']], fixed = TRUE) ||
|
|
grepl('Darwin', Sys.info()[['sysname']], fixed = TRUE)) {
|
|
test_that("xgb-attribute numeric precision", {
|
|
.skip_if_vcd_not_available()
|
|
# check that lossless conversion works with 17 digits
|
|
# numeric -> character -> numeric
|
|
X <- 10^runif(100, -20, 20)
|
|
if (capabilities('long.double')) {
|
|
X2X <- as.numeric(format(X, digits = 17))
|
|
expect_equal(X, X2X, tolerance = float_tolerance)
|
|
}
|
|
# retrieved attributes to be the same as written
|
|
for (x in X) {
|
|
xgb.attr(bst.Tree, "x") <- x
|
|
expect_equal(as.numeric(xgb.attr(bst.Tree, "x")), x, tolerance = float_tolerance)
|
|
xgb.attributes(bst.Tree) <- list(a = "A", b = x)
|
|
expect_equal(as.numeric(xgb.attr(bst.Tree, "b")), x, tolerance = float_tolerance)
|
|
}
|
|
})
|
|
}
|
|
|
|
test_that("xgb.Booster serializing as R object works", {
|
|
.skip_if_vcd_not_available()
|
|
fname_rds <- file.path(tempdir(), "xgb.model.rds")
|
|
saveRDS(bst.Tree, fname_rds)
|
|
bst <- readRDS(fname_rds)
|
|
dtrain <- xgb.DMatrix(sparse_matrix, label = label, nthread = 2)
|
|
expect_equal(predict(bst.Tree, dtrain), predict(bst, dtrain), tolerance = float_tolerance)
|
|
expect_equal(xgb.dump(bst.Tree), xgb.dump(bst))
|
|
|
|
fname_bin <- file.path(tempdir(), "xgb.model")
|
|
xgb.save(bst, fname_bin)
|
|
bst <- readRDS(fname_rds)
|
|
expect_equal(predict(bst.Tree, dtrain), predict(bst, dtrain), tolerance = float_tolerance)
|
|
})
|
|
|
|
test_that("xgb.model.dt.tree works with and without feature names", {
|
|
.skip_if_vcd_not_available()
|
|
names.dt.trees <- c("Tree", "Node", "ID", "Feature", "Split", "Yes", "No", "Missing", "Gain", "Cover")
|
|
dt.tree <- xgb.model.dt.tree(model = bst.Tree)
|
|
expect_equal(names.dt.trees, names(dt.tree))
|
|
if (!flag_32bit)
|
|
expect_equal(dim(dt.tree), c(188, 10))
|
|
expect_output(str(dt.tree), 'Feature.*\\"Age\\"')
|
|
|
|
# when model contains no feature names:
|
|
dt.tree.x <- xgb.model.dt.tree(model = bst.Tree.unnamed)
|
|
expect_output(str(dt.tree.x), 'Feature.*\\"3\\"')
|
|
expect_equal(dt.tree[, -4, with = FALSE], dt.tree.x[, -4, with = FALSE])
|
|
|
|
# using integer node ID instead of character
|
|
dt.tree.int <- xgb.model.dt.tree(model = bst.Tree, use_int_id = TRUE)
|
|
expect_equal(as.integer(data.table::tstrsplit(dt.tree$Yes, '-', fixed = TRUE)[[2]]), dt.tree.int$Yes)
|
|
expect_equal(as.integer(data.table::tstrsplit(dt.tree$No, '-', fixed = TRUE)[[2]]), dt.tree.int$No)
|
|
expect_equal(as.integer(data.table::tstrsplit(dt.tree$Missing, '-', fixed = TRUE)[[2]]), dt.tree.int$Missing)
|
|
})
|
|
|
|
test_that("xgb.model.dt.tree throws error for gblinear", {
|
|
.skip_if_vcd_not_available()
|
|
expect_error(xgb.model.dt.tree(model = bst.GLM))
|
|
})
|
|
|
|
test_that("xgb.importance works with and without feature names", {
|
|
.skip_if_vcd_not_available()
|
|
importance.Tree <- xgb.importance(feature_names = feature.names, model = bst.Tree.unnamed)
|
|
if (!flag_32bit)
|
|
expect_equal(dim(importance.Tree), c(7, 4))
|
|
expect_equal(colnames(importance.Tree), c("Feature", "Gain", "Cover", "Frequency"))
|
|
expect_output(str(importance.Tree), 'Feature.*\\"Age\\"')
|
|
|
|
importance.Tree.0 <- xgb.importance(model = bst.Tree)
|
|
expect_equal(importance.Tree, importance.Tree.0, tolerance = float_tolerance)
|
|
|
|
# when model contains no feature names:
|
|
importance.Tree.x <- xgb.importance(model = bst.Tree.unnamed)
|
|
expect_equal(importance.Tree[, -1, with = FALSE], importance.Tree.x[, -1, with = FALSE],
|
|
tolerance = float_tolerance)
|
|
|
|
imp2plot <- xgb.plot.importance(importance_matrix = importance.Tree)
|
|
expect_equal(colnames(imp2plot), c("Feature", "Gain", "Cover", "Frequency", "Importance"))
|
|
xgb.ggplot.importance(importance_matrix = importance.Tree)
|
|
|
|
# for multiclass
|
|
imp.Tree <- xgb.importance(model = mbst.Tree)
|
|
expect_equal(dim(imp.Tree), c(4, 4))
|
|
|
|
trees <- seq(from = 0, by = 2, length.out = 2)
|
|
importance <- xgb.importance(feature_names = feature.names, model = bst.Tree, trees = trees)
|
|
|
|
importance_from_dump <- function() {
|
|
model_text_dump <- xgb.dump(model = bst.Tree, with_stats = TRUE, trees = trees)
|
|
imp <- xgb.model.dt.tree(
|
|
text = model_text_dump,
|
|
trees = trees
|
|
)[
|
|
Feature != "Leaf", .(
|
|
Gain = sum(Gain),
|
|
Cover = sum(Cover),
|
|
Frequency = .N
|
|
),
|
|
by = Feature
|
|
][
|
|
, `:=`(
|
|
Gain = Gain / sum(Gain),
|
|
Cover = Cover / sum(Cover),
|
|
Frequency = Frequency / sum(Frequency)
|
|
)
|
|
][
|
|
order(Gain, decreasing = TRUE)
|
|
]
|
|
imp
|
|
}
|
|
expect_equal(importance_from_dump(), importance, tolerance = 1e-6)
|
|
|
|
## decision stump
|
|
m <- xgboost::xgb.train(
|
|
data = xgb.DMatrix(as.matrix(data.frame(x = c(0, 1))), label = c(1, 2)),
|
|
nrounds = 1,
|
|
base_score = 0.5,
|
|
nthread = 2
|
|
)
|
|
df <- xgb.model.dt.tree(model = m)
|
|
expect_equal(df$Feature, "Leaf")
|
|
expect_equal(df$Cover, 2)
|
|
})
|
|
|
|
test_that("xgb.importance works with GLM model", {
|
|
.skip_if_vcd_not_available()
|
|
importance.GLM <- xgb.importance(feature_names = feature.names, model = bst.GLM)
|
|
expect_equal(dim(importance.GLM), c(10, 2))
|
|
expect_equal(colnames(importance.GLM), c("Feature", "Weight"))
|
|
xgb.importance(model = bst.GLM)
|
|
imp2plot <- xgb.plot.importance(importance.GLM)
|
|
expect_equal(colnames(imp2plot), c("Feature", "Weight", "Importance"))
|
|
xgb.ggplot.importance(importance.GLM)
|
|
|
|
# check that the input is not modified in-place
|
|
expect_false("Importance" %in% names(importance.GLM))
|
|
|
|
# for multiclass
|
|
imp.GLM <- xgb.importance(model = mbst.GLM)
|
|
expect_equal(dim(imp.GLM), c(12, 3))
|
|
expect_equal(imp.GLM$Class, rep(0:2, each = 4))
|
|
})
|
|
|
|
test_that("xgb.model.dt.tree and xgb.importance work with a single split model", {
|
|
.skip_if_vcd_not_available()
|
|
bst1 <- xgb.train(data = xgb.DMatrix(sparse_matrix, label = label), max_depth = 1,
|
|
eta = 1, nthread = 2, nrounds = 1, verbose = 0,
|
|
objective = "binary:logistic")
|
|
expect_error(dt <- xgb.model.dt.tree(model = bst1), regexp = NA) # no error
|
|
expect_equal(nrow(dt), 3)
|
|
expect_error(imp <- xgb.importance(model = bst1), regexp = NA) # no error
|
|
expect_equal(nrow(imp), 1)
|
|
expect_equal(imp$Gain, 1)
|
|
})
|
|
|
|
test_that("xgb.plot.importance de-duplicates features", {
|
|
importances <- data.table(
|
|
Feature = c("col1", "col2", "col2"),
|
|
Gain = c(0.4, 0.3, 0.3)
|
|
)
|
|
imp2plot <- xgb.plot.importance(importances)
|
|
expect_equal(nrow(imp2plot), 2L)
|
|
expect_equal(imp2plot$Feature, c("col2", "col1"))
|
|
})
|
|
|
|
test_that("xgb.plot.tree works with and without feature names", {
|
|
.skip_if_vcd_not_available()
|
|
expect_silent(xgb.plot.tree(feature_names = feature.names, model = bst.Tree.unnamed))
|
|
expect_silent(xgb.plot.tree(model = bst.Tree))
|
|
})
|
|
|
|
test_that("xgb.plot.multi.trees works with and without feature names", {
|
|
.skip_if_vcd_not_available()
|
|
xgb.plot.multi.trees(model = bst.Tree.unnamed, feature_names = feature.names, features_keep = 3)
|
|
xgb.plot.multi.trees(model = bst.Tree, features_keep = 3)
|
|
})
|
|
|
|
test_that("xgb.plot.deepness works", {
|
|
.skip_if_vcd_not_available()
|
|
d2p <- xgb.plot.deepness(model = bst.Tree)
|
|
expect_equal(colnames(d2p), c("ID", "Tree", "Depth", "Cover", "Weight"))
|
|
xgb.plot.deepness(model = bst.Tree, which = "med.depth")
|
|
xgb.ggplot.deepness(model = bst.Tree)
|
|
})
|
|
|
|
test_that("xgb.shap.data works when top_n is provided", {
|
|
.skip_if_vcd_not_available()
|
|
data_list <- xgb.shap.data(data = sparse_matrix, model = bst.Tree, top_n = 2)
|
|
expect_equal(names(data_list), c("data", "shap_contrib"))
|
|
expect_equal(NCOL(data_list$data), 2)
|
|
expect_equal(NCOL(data_list$shap_contrib), 2)
|
|
expect_equal(NROW(data_list$data), NROW(data_list$shap_contrib))
|
|
expect_gt(length(colnames(data_list$data)), 0)
|
|
expect_gt(length(colnames(data_list$shap_contrib)), 0)
|
|
|
|
# for multiclass without target class provided
|
|
data_list <- xgb.shap.data(data = as.matrix(iris[, -5]), model = mbst.Tree, top_n = 2)
|
|
expect_equal(dim(data_list$shap_contrib), c(nrow(iris), 2))
|
|
# for multiclass with target class provided
|
|
data_list <- xgb.shap.data(data = as.matrix(iris[, -5]), model = mbst.Tree, top_n = 2, target_class = 0)
|
|
expect_equal(dim(data_list$shap_contrib), c(nrow(iris), 2))
|
|
})
|
|
|
|
test_that("xgb.shap.data works with subsampling", {
|
|
.skip_if_vcd_not_available()
|
|
data_list <- xgb.shap.data(data = sparse_matrix, model = bst.Tree, top_n = 2, subsample = 0.8)
|
|
expect_equal(NROW(data_list$data), as.integer(0.8 * nrow(sparse_matrix)))
|
|
expect_equal(NROW(data_list$data), NROW(data_list$shap_contrib))
|
|
})
|
|
|
|
test_that("prepare.ggplot.shap.data works", {
|
|
.skip_if_vcd_not_available()
|
|
data_list <- xgb.shap.data(data = sparse_matrix, model = bst.Tree, top_n = 2)
|
|
plot_data <- prepare.ggplot.shap.data(data_list, normalize = TRUE)
|
|
expect_s3_class(plot_data, "data.frame")
|
|
expect_equal(names(plot_data), c("id", "feature", "feature_value", "shap_value"))
|
|
expect_s3_class(plot_data$feature, "factor")
|
|
# Each observation should have 1 row for each feature
|
|
expect_equal(nrow(plot_data), nrow(sparse_matrix) * 2)
|
|
})
|
|
|
|
test_that("xgb.plot.shap works", {
|
|
.skip_if_vcd_not_available()
|
|
sh <- xgb.plot.shap(data = sparse_matrix, model = bst.Tree, top_n = 2, col = 4)
|
|
expect_equal(names(sh), c("data", "shap_contrib"))
|
|
})
|
|
|
|
test_that("xgb.plot.shap.summary works", {
|
|
.skip_if_vcd_not_available()
|
|
expect_silent(xgb.plot.shap.summary(data = sparse_matrix, model = bst.Tree, top_n = 2))
|
|
expect_silent(xgb.ggplot.shap.summary(data = sparse_matrix, model = bst.Tree, top_n = 2))
|
|
})
|
|
|
|
test_that("check.deprecation works", {
|
|
ttt <- function(a = NNULL, DUMMY = NULL, ...) {
|
|
check.deprecation(...)
|
|
as.list((environment()))
|
|
}
|
|
res <- ttt(a = 1, DUMMY = 2, z = 3)
|
|
expect_equal(res, list(a = 1, DUMMY = 2))
|
|
expect_warning(
|
|
res <- ttt(a = 1, dummy = 22, z = 3)
|
|
, "\'dummy\' is deprecated")
|
|
expect_equal(res, list(a = 1, DUMMY = 22))
|
|
expect_warning(
|
|
res <- ttt(a = 1, dumm = 22, z = 3)
|
|
, "\'dumm\' was partially matched to \'dummy\'")
|
|
expect_equal(res, list(a = 1, DUMMY = 22))
|
|
})
|
|
|
|
test_that('convert.labels works', {
|
|
y <- c(0, 1, 0, 0, 1)
|
|
for (objective in c('binary:logistic', 'binary:logitraw', 'binary:hinge')) {
|
|
res <- xgboost:::convert.labels(y, objective_name = objective)
|
|
expect_s3_class(res, 'factor')
|
|
expect_equal(res, factor(res))
|
|
}
|
|
y <- c(0, 1, 3, 2, 1, 4)
|
|
for (objective in c('multi:softmax', 'multi:softprob', 'rank:pairwise', 'rank:ndcg',
|
|
'rank:map')) {
|
|
res <- xgboost:::convert.labels(y, objective_name = objective)
|
|
expect_s3_class(res, 'factor')
|
|
expect_equal(res, factor(res))
|
|
}
|
|
y <- c(1.2, 3.0, -1.0, 10.0)
|
|
for (objective in c('reg:squarederror', 'reg:squaredlogerror', 'reg:logistic',
|
|
'reg:pseudohubererror', 'count:poisson', 'survival:cox', 'survival:aft',
|
|
'reg:gamma', 'reg:tweedie')) {
|
|
res <- xgboost:::convert.labels(y, objective_name = objective)
|
|
expect_equal(class(res), 'numeric')
|
|
}
|
|
})
|
|
|
|
test_that("validate.features works as expected", {
|
|
data(mtcars)
|
|
y <- mtcars$mpg
|
|
x <- as.matrix(mtcars[, -1])
|
|
dm <- xgb.DMatrix(x, label = y, nthread = 1)
|
|
model <- xgb.train(
|
|
params = list(nthread = 1),
|
|
data = dm,
|
|
nrounds = 3
|
|
)
|
|
|
|
# result is output as-is when needed
|
|
res <- validate.features(model, x)
|
|
expect_equal(res, x)
|
|
res <- validate.features(model, dm)
|
|
expect_identical(res, dm)
|
|
res <- validate.features(model, as(x[1, ], "dsparseVector"))
|
|
expect_equal(as.numeric(res), unname(x[1, ]))
|
|
res <- validate.features(model, "file.txt")
|
|
expect_equal(res, "file.txt")
|
|
|
|
# columns are reordered
|
|
res <- validate.features(model, mtcars[, rev(names(mtcars))])
|
|
expect_equal(names(res), colnames(x))
|
|
expect_equal(as.matrix(res), x)
|
|
res <- validate.features(model, as.matrix(mtcars[, rev(names(mtcars))]))
|
|
expect_equal(colnames(res), colnames(x))
|
|
expect_equal(res, x)
|
|
res <- validate.features(model, mtcars[1, rev(names(mtcars)), drop = FALSE])
|
|
expect_equal(names(res), colnames(x))
|
|
expect_equal(unname(as.matrix(res)), unname(x[1, , drop = FALSE]))
|
|
res <- validate.features(model, as.data.table(mtcars[, rev(names(mtcars))]))
|
|
expect_equal(names(res), colnames(x))
|
|
expect_equal(unname(as.matrix(res)), unname(x))
|
|
|
|
# error when columns are missing
|
|
expect_error({
|
|
validate.features(model, mtcars[, 1:3])
|
|
})
|
|
expect_error({
|
|
validate.features(model, as.matrix(mtcars[, 1:ncol(x)])) # nolint
|
|
})
|
|
expect_error({
|
|
validate.features(model, xgb.DMatrix(mtcars[, 1:3]))
|
|
})
|
|
expect_error({
|
|
validate.features(model, as(x[, 1:3], "CsparseMatrix"))
|
|
})
|
|
|
|
# error when it cannot reorder or subset
|
|
expect_error({
|
|
validate.features(model, xgb.DMatrix(mtcars))
|
|
}, "Feature names")
|
|
expect_error({
|
|
validate.features(model, xgb.DMatrix(x[, rev(colnames(x))]))
|
|
}, "Feature names")
|
|
|
|
# no error about types if the booster doesn't have types
|
|
expect_error({
|
|
validate.features(model, xgb.DMatrix(x, feature_types = c(rep("q", 5), rep("c", 5))))
|
|
}, NA)
|
|
tmp <- mtcars
|
|
tmp[["vs"]] <- factor(tmp[["vs"]])
|
|
expect_error({
|
|
validate.features(model, tmp)
|
|
}, NA)
|
|
|
|
# error when types do not match
|
|
setinfo(model, "feature_type", rep("q", 10))
|
|
expect_error({
|
|
validate.features(model, xgb.DMatrix(x, feature_types = c(rep("q", 5), rep("c", 5))))
|
|
}, "Feature types")
|
|
tmp <- mtcars
|
|
tmp[["vs"]] <- factor(tmp[["vs"]])
|
|
expect_error({
|
|
validate.features(model, tmp)
|
|
}, "Feature types")
|
|
})
|