xgboost/tests/cpp/common/test_hist_util.cu
2020-03-14 13:43:24 +13:00

289 lines
9.9 KiB
Plaintext

#include <dmlc/filesystem.h>
#include <gtest/gtest.h>
#include <algorithm>
#include <cmath>
#include <thrust/device_vector.h>
#include "xgboost/c_api.h"
#include "../../../src/common/device_helpers.cuh"
#include "../../../src/common/hist_util.h"
#include "../helpers.h"
#include <xgboost/data.h>
#include "../../../src/data/device_adapter.cuh"
#include "../data/test_array_interface.h"
#include "../../../src/common/math.h"
#include "../../../src/data/simple_dmatrix.h"
#include "test_hist_util.h"
#include "../../../include/xgboost/logging.h"
namespace xgboost {
namespace common {
template <typename AdapterT>
HistogramCuts GetHostCuts(AdapterT *adapter, int num_bins, float missing) {
HistogramCuts cuts;
DenseCuts builder(&cuts);
data::SimpleDMatrix dmat(adapter, missing, 1);
builder.Build(&dmat, num_bins);
return cuts;
}
TEST(hist_util, DeviceSketch) {
int num_rows = 5;
int num_columns = 1;
int num_bins = 4;
std::vector<float> x = {1.0, 2.0, 3.0, 4.0, 5.0};
auto dmat = GetDMatrixFromData(x, num_rows, num_columns);
auto device_cuts = DeviceSketch(0, dmat.get(), num_bins);
HistogramCuts host_cuts;
DenseCuts builder(&host_cuts);
builder.Build(dmat.get(), num_bins);
EXPECT_EQ(device_cuts.Values(), host_cuts.Values());
EXPECT_EQ(device_cuts.Ptrs(), host_cuts.Ptrs());
EXPECT_EQ(device_cuts.MinValues(), host_cuts.MinValues());
}
// Duplicate this function from hist_util.cu so we don't have to expose it in
// header
size_t RequiredSampleCutsTest(int max_bins, size_t num_rows) {
constexpr int kFactor = 8;
double eps = 1.0 / (kFactor * max_bins);
size_t dummy_nlevel;
size_t num_cuts;
WQuantileSketch<bst_float, bst_float>::LimitSizeLevel(
num_rows, eps, &dummy_nlevel, &num_cuts);
return std::min(num_cuts, num_rows);
}
TEST(hist_util, DeviceSketchMemory) {
int num_columns = 100;
int num_rows = 1000;
int num_bins = 256;
auto x = GenerateRandom(num_rows, num_columns);
auto dmat = GetDMatrixFromData(x, num_rows, num_columns);
dh::GlobalMemoryLogger().Clear();
ConsoleLogger::Configure({{"verbosity", "3"}});
auto device_cuts = DeviceSketch(0, dmat.get(), num_bins);
ConsoleLogger::Configure({{"verbosity", "0"}});
size_t bytes_num_elements = num_rows * num_columns*sizeof(Entry);
size_t bytes_cuts = RequiredSampleCutsTest(num_bins, num_rows) * num_columns *
sizeof(DenseCuts::WQSketch::Entry);
size_t bytes_constant = 1000;
EXPECT_LE(dh::GlobalMemoryLogger().PeakMemory(),
bytes_num_elements + bytes_cuts + bytes_constant);
}
TEST(hist_util, DeviceSketchMemoryWeights) {
int num_columns = 100;
int num_rows = 1000;
int num_bins = 256;
auto x = GenerateRandom(num_rows, num_columns);
auto dmat = GetDMatrixFromData(x, num_rows, num_columns);
dmat->Info().weights_.HostVector() = GenerateRandomWeights(num_rows);
dh::GlobalMemoryLogger().Clear();
ConsoleLogger::Configure({{"verbosity", "3"}});
auto device_cuts = DeviceSketch(0, dmat.get(), num_bins);
ConsoleLogger::Configure({{"verbosity", "0"}});
size_t bytes_num_elements =
num_rows * num_columns * (sizeof(Entry) + sizeof(float));
size_t bytes_cuts = RequiredSampleCutsTest(num_bins, num_rows) * num_columns *
sizeof(DenseCuts::WQSketch::Entry);
EXPECT_LE(dh::GlobalMemoryLogger().PeakMemory(),
size_t((bytes_num_elements + bytes_cuts) * 1.05));
}
TEST(hist_util, DeviceSketchDeterminism) {
int num_rows = 500;
int num_columns = 5;
int num_bins = 256;
auto x = GenerateRandom(num_rows, num_columns);
auto dmat = GetDMatrixFromData(x, num_rows, num_columns);
auto reference_sketch = DeviceSketch(0, dmat.get(), num_bins);
size_t constexpr kRounds{ 100 };
for (size_t r = 0; r < kRounds; ++r) {
auto new_sketch = DeviceSketch(0, dmat.get(), num_bins);
ASSERT_EQ(reference_sketch.Values(), new_sketch.Values());
ASSERT_EQ(reference_sketch.MinValues(), new_sketch.MinValues());
}
}
TEST(hist_util, DeviceSketchCategorical) {
int categorical_sizes[] = {2, 6, 8, 12};
int num_bins = 256;
int sizes[] = {25, 100, 1000};
for (auto n : sizes) {
for (auto num_categories : categorical_sizes) {
auto x = GenerateRandomCategoricalSingleColumn(n, num_categories);
auto dmat = GetDMatrixFromData(x, n, 1);
auto cuts = DeviceSketch(0, dmat.get(), num_bins);
ValidateCuts(cuts, dmat.get(), num_bins);
}
}
}
TEST(hist_util, DeviceSketchMultipleColumns) {
int bin_sizes[] = {2, 16, 256, 512};
int sizes[] = {100, 1000, 1500};
int num_columns = 5;
for (auto num_rows : sizes) {
auto x = GenerateRandom(num_rows, num_columns);
auto dmat = GetDMatrixFromData(x, num_rows, num_columns);
for (auto num_bins : bin_sizes) {
auto cuts = DeviceSketch(0, dmat.get(), num_bins);
ValidateCuts(cuts, dmat.get(), num_bins);
}
}
}
TEST(hist_util, DeviceSketchMultipleColumnsWeights) {
int bin_sizes[] = {2, 16, 256, 512};
int sizes[] = {100, 1000, 1500};
int num_columns = 5;
for (auto num_rows : sizes) {
auto x = GenerateRandom(num_rows, num_columns);
auto dmat = GetDMatrixFromData(x, num_rows, num_columns);
dmat->Info().weights_.HostVector() = GenerateRandomWeights(num_rows);
for (auto num_bins : bin_sizes) {
auto cuts = DeviceSketch(0, dmat.get(), num_bins);
ValidateCuts(cuts, dmat.get(), num_bins);
}
}
}
TEST(hist_util, DeviceSketchBatches) {
int num_bins = 256;
int num_rows = 5000;
int batch_sizes[] = {0, 100, 1500, 6000};
int num_columns = 5;
for (auto batch_size : batch_sizes) {
auto x = GenerateRandom(num_rows, num_columns);
auto dmat = GetDMatrixFromData(x, num_rows, num_columns);
auto cuts = DeviceSketch(0, dmat.get(), num_bins, batch_size);
ValidateCuts(cuts, dmat.get(), num_bins);
}
}
TEST(hist_util, DeviceSketchMultipleColumnsExternal) {
int bin_sizes[] = {2, 16, 256, 512};
int sizes[] = {100, 1000, 1500};
int num_columns =5;
for (auto num_rows : sizes) {
auto x = GenerateRandom(num_rows, num_columns);
dmlc::TemporaryDirectory temp;
auto dmat =
GetExternalMemoryDMatrixFromData(x, num_rows, num_columns, 100, temp);
for (auto num_bins : bin_sizes) {
auto cuts = DeviceSketch(0, dmat.get(), num_bins);
ValidateCuts(cuts, dmat.get(), num_bins);
}
}
}
TEST(hist_util, AdapterDeviceSketch)
{
int rows = 5;
int cols = 1;
int num_bins = 4;
float missing = - 1.0;
thrust::device_vector< float> data(rows*cols);
auto json_array_interface = Generate2dArrayInterface(rows, cols, "<f4", &data);
data = std::vector<float >{ 1.0,2.0,3.0,4.0,5.0 };
std::stringstream ss;
Json::Dump(json_array_interface, &ss);
std::string str = ss.str();
data::CupyAdapter adapter(str);
auto device_cuts = AdapterDeviceSketch(&adapter, num_bins, missing);
auto host_cuts = GetHostCuts(&adapter, num_bins, missing);
EXPECT_EQ(device_cuts.Values(), host_cuts.Values());
EXPECT_EQ(device_cuts.Ptrs(), host_cuts.Ptrs());
EXPECT_EQ(device_cuts.MinValues(), host_cuts.MinValues());
}
TEST(hist_util, AdapterDeviceSketchMemory) {
int num_columns = 100;
int num_rows = 1000;
int num_bins = 256;
auto x = GenerateRandom(num_rows, num_columns);
auto x_device = thrust::device_vector<float>(x);
auto adapter = AdapterFromData(x_device, num_rows, num_columns);
dh::GlobalMemoryLogger().Clear();
ConsoleLogger::Configure({{"verbosity", "3"}});
auto cuts = AdapterDeviceSketch(&adapter, num_bins,
std::numeric_limits<float>::quiet_NaN());
ConsoleLogger::Configure({{"verbosity", "0"}});
size_t bytes_num_elements = num_rows * num_columns * sizeof(Entry);
size_t bytes_num_columns = (num_columns + 1) * sizeof(size_t);
size_t bytes_cuts = RequiredSampleCutsTest(num_bins, num_rows) * num_columns *
sizeof(DenseCuts::WQSketch::Entry);
size_t bytes_constant = 1000;
EXPECT_LE(dh::GlobalMemoryLogger().PeakMemory(),
bytes_num_elements + bytes_cuts + bytes_num_columns + bytes_constant);
}
TEST(hist_util, AdapterDeviceSketchCategorical) {
int categorical_sizes[] = {2, 6, 8, 12};
int num_bins = 256;
int sizes[] = {25, 100, 1000};
for (auto n : sizes) {
for (auto num_categories : categorical_sizes) {
auto x = GenerateRandomCategoricalSingleColumn(n, num_categories);
auto dmat = GetDMatrixFromData(x, n, 1);
auto x_device = thrust::device_vector<float>(x);
auto adapter = AdapterFromData(x_device, n, 1);
auto cuts = AdapterDeviceSketch(&adapter, num_bins,
std::numeric_limits<float>::quiet_NaN());
ValidateCuts(cuts, dmat.get(), num_bins);
}
}
}
TEST(hist_util, AdapterDeviceSketchMultipleColumns) {
int bin_sizes[] = {2, 16, 256, 512};
int sizes[] = {100, 1000, 1500};
int num_columns = 5;
for (auto num_rows : sizes) {
auto x = GenerateRandom(num_rows, num_columns);
auto dmat = GetDMatrixFromData(x, num_rows, num_columns);
auto x_device = thrust::device_vector<float>(x);
for (auto num_bins : bin_sizes) {
auto adapter = AdapterFromData(x_device, num_rows, num_columns);
auto cuts = AdapterDeviceSketch(&adapter, num_bins,
std::numeric_limits<float>::quiet_NaN());
ValidateCuts(cuts, dmat.get(), num_bins);
}
}
}
TEST(hist_util, AdapterDeviceSketchBatches) {
int num_bins = 256;
int num_rows = 5000;
int batch_sizes[] = {0, 100, 1500, 6000};
int num_columns = 5;
for (auto batch_size : batch_sizes) {
auto x = GenerateRandom(num_rows, num_columns);
auto dmat = GetDMatrixFromData(x, num_rows, num_columns);
auto x_device = thrust::device_vector<float>(x);
auto adapter = AdapterFromData(x_device, num_rows, num_columns);
auto cuts = AdapterDeviceSketch(&adapter, num_bins,
std::numeric_limits<float>::quiet_NaN(),
batch_size);
ValidateCuts(cuts, dmat.get(), num_bins);
}
}
} // namespace common
} // namespace xgboost