606 lines
19 KiB
C++
606 lines
19 KiB
C++
/*!
|
|
* Copyright (c) 2019~2020 by Contributors
|
|
* \file adapter.h
|
|
*/
|
|
#ifndef XGBOOST_DATA_ADAPTER_H_
|
|
#define XGBOOST_DATA_ADAPTER_H_
|
|
#include <dmlc/data.h>
|
|
|
|
#include <cstddef>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "xgboost/logging.h"
|
|
#include "xgboost/base.h"
|
|
#include "xgboost/data.h"
|
|
#include "xgboost/span.h"
|
|
|
|
#include "array_interface.h"
|
|
#include "../c_api/c_api_error.h"
|
|
|
|
namespace xgboost {
|
|
namespace data {
|
|
|
|
/** External data formats should implement an adapter as below. The
|
|
* adapter provides a uniform access to data outside xgboost, allowing
|
|
* construction of DMatrix objects from a range of sources without duplicating
|
|
* code.
|
|
*
|
|
* The adapter object is an iterator that returns batches of data. Each batch
|
|
* contains a number of "lines". A line represents a set of elements from a
|
|
* sparse input matrix, normally a row in the case of a CSR matrix or a column
|
|
* for a CSC matrix. Typically in sparse matrix formats we can efficiently
|
|
* access subsets of elements at a time, but cannot efficiently lookups elements
|
|
* by random access, hence the "line" abstraction, allowing the sparse matrix to
|
|
* return subsets of elements efficiently. Individual elements are described by
|
|
* a COO tuple (row index, column index, value).
|
|
*
|
|
* This abstraction allows us to read through different sparse matrix formats
|
|
* using the same interface. In particular we can write a DMatrix constructor
|
|
* that uses the same code to construct itself from a CSR matrix, CSC matrix,
|
|
* dense matrix, csv, libsvm file, or potentially other formats. To see why this
|
|
* is necessary, imagine we have 5 external matrix formats and 5 internal
|
|
* DMatrix types where each DMatrix needs a custom constructor for each possible
|
|
* input. The number of constructors is 5*5=25. Using an abstraction over the
|
|
* input data types the number of constructors is reduced to 5, as each DMatrix
|
|
* is oblivious to the external data format. Adding a new input source is simply
|
|
* a case of implementing an adapter.
|
|
*
|
|
* Most of the below adapters do not need more than one batch as the data
|
|
* originates from an in memory source. The file adapter does require batches to
|
|
* avoid loading the entire file in memory.
|
|
*
|
|
* An important detail is empty row/column handling. Files loaded from disk do
|
|
* not provide meta information about the number of rows/columns to expect, this
|
|
* needs to be inferred during construction. Other sparse formats may specify a
|
|
* number of rows/columns, but we can encounter entirely sparse rows or columns,
|
|
* leading to disagreement between the inferred number and the meta-info
|
|
* provided. To resolve this, adapters have methods specifying the number of
|
|
* rows/columns expected, these methods may return zero where these values must
|
|
* be inferred from data. A constructed DMatrix should agree with the input
|
|
* source on numbers of rows/columns, appending empty rows if necessary.
|
|
* */
|
|
|
|
/** \brief An adapter can return this value for number of rows or columns
|
|
* indicating that this value is currently unknown and should be inferred while
|
|
* passing over the data. */
|
|
constexpr size_t kAdapterUnknownSize = std::numeric_limits<size_t >::max();
|
|
|
|
struct COOTuple {
|
|
COOTuple() = default;
|
|
XGBOOST_DEVICE COOTuple(size_t row_idx, size_t column_idx, float value)
|
|
: row_idx(row_idx), column_idx(column_idx), value(value) {}
|
|
|
|
size_t row_idx{0};
|
|
size_t column_idx{0};
|
|
float value{0};
|
|
};
|
|
|
|
namespace detail {
|
|
|
|
/**
|
|
* \brief Simplifies the use of DataIter when there is only one batch.
|
|
*/
|
|
template <typename DType>
|
|
class SingleBatchDataIter : dmlc::DataIter<DType> {
|
|
public:
|
|
void BeforeFirst() override { counter_ = 0; }
|
|
bool Next() override {
|
|
if (counter_ == 0) {
|
|
counter_++;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
int counter_{0};
|
|
};
|
|
|
|
/** \brief Indicates this data source cannot contain meta-info such as labels,
|
|
* weights or qid. */
|
|
class NoMetaInfo {
|
|
public:
|
|
const float* Labels() const { return nullptr; }
|
|
const float* Weights() const { return nullptr; }
|
|
const uint64_t* Qid() const { return nullptr; }
|
|
const float* BaseMargin() const { return nullptr; }
|
|
};
|
|
|
|
}; // namespace detail
|
|
|
|
class CSRAdapterBatch : public detail::NoMetaInfo {
|
|
public:
|
|
class Line {
|
|
public:
|
|
Line(size_t row_idx, size_t size, const unsigned* feature_idx,
|
|
const float* values)
|
|
: row_idx_(row_idx),
|
|
size_(size),
|
|
feature_idx_(feature_idx),
|
|
values_(values) {}
|
|
|
|
size_t Size() const { return size_; }
|
|
COOTuple GetElement(size_t idx) const {
|
|
return COOTuple{row_idx_, feature_idx_[idx], values_[idx]};
|
|
}
|
|
|
|
private:
|
|
size_t row_idx_;
|
|
size_t size_;
|
|
const unsigned* feature_idx_;
|
|
const float* values_;
|
|
};
|
|
CSRAdapterBatch(const size_t* row_ptr, const unsigned* feature_idx,
|
|
const float* values, size_t num_rows, size_t num_elements,
|
|
size_t num_features)
|
|
: row_ptr_(row_ptr),
|
|
feature_idx_(feature_idx),
|
|
values_(values),
|
|
num_rows_(num_rows) {}
|
|
const Line GetLine(size_t idx) const {
|
|
size_t begin_offset = row_ptr_[idx];
|
|
size_t end_offset = row_ptr_[idx + 1];
|
|
return Line(idx, end_offset - begin_offset, &feature_idx_[begin_offset],
|
|
&values_[begin_offset]);
|
|
}
|
|
size_t Size() const { return num_rows_; }
|
|
|
|
private:
|
|
const size_t* row_ptr_;
|
|
const unsigned* feature_idx_;
|
|
const float* values_;
|
|
size_t num_rows_;
|
|
};
|
|
|
|
class CSRAdapter : public detail::SingleBatchDataIter<CSRAdapterBatch> {
|
|
public:
|
|
CSRAdapter(const size_t* row_ptr, const unsigned* feature_idx,
|
|
const float* values, size_t num_rows, size_t num_elements,
|
|
size_t num_features)
|
|
: batch_(row_ptr, feature_idx, values, num_rows, num_elements,
|
|
num_features),
|
|
num_rows_(num_rows),
|
|
num_columns_(num_features) {}
|
|
const CSRAdapterBatch& Value() const override { return batch_; }
|
|
size_t NumRows() const { return num_rows_; }
|
|
size_t NumColumns() const { return num_columns_; }
|
|
|
|
private:
|
|
CSRAdapterBatch batch_;
|
|
size_t num_rows_;
|
|
size_t num_columns_;
|
|
};
|
|
|
|
class DenseAdapterBatch : public detail::NoMetaInfo {
|
|
public:
|
|
DenseAdapterBatch(const float* values, size_t num_rows, size_t num_features)
|
|
: values_(values),
|
|
num_rows_(num_rows),
|
|
num_features_(num_features) {}
|
|
|
|
private:
|
|
class Line {
|
|
public:
|
|
Line(const float* values, size_t size, size_t row_idx)
|
|
: row_idx_(row_idx), size_(size), values_(values) {}
|
|
|
|
size_t Size() const { return size_; }
|
|
COOTuple GetElement(size_t idx) const {
|
|
return COOTuple{row_idx_, idx, values_[idx]};
|
|
}
|
|
|
|
private:
|
|
size_t row_idx_;
|
|
size_t size_;
|
|
const float* values_;
|
|
};
|
|
|
|
public:
|
|
size_t Size() const { return num_rows_; }
|
|
const Line GetLine(size_t idx) const {
|
|
return Line(values_ + idx * num_features_, num_features_, idx);
|
|
}
|
|
|
|
private:
|
|
const float* values_;
|
|
size_t num_rows_;
|
|
size_t num_features_;
|
|
};
|
|
|
|
class DenseAdapter : public detail::SingleBatchDataIter<DenseAdapterBatch> {
|
|
public:
|
|
DenseAdapter(const float* values, size_t num_rows, size_t num_features)
|
|
: batch_(values, num_rows, num_features),
|
|
num_rows_(num_rows),
|
|
num_columns_(num_features) {}
|
|
const DenseAdapterBatch& Value() const override { return batch_; }
|
|
|
|
size_t NumRows() const { return num_rows_; }
|
|
size_t NumColumns() const { return num_columns_; }
|
|
|
|
private:
|
|
DenseAdapterBatch batch_;
|
|
size_t num_rows_;
|
|
size_t num_columns_;
|
|
};
|
|
|
|
class CSCAdapterBatch : public detail::NoMetaInfo {
|
|
public:
|
|
CSCAdapterBatch(const size_t* col_ptr, const unsigned* row_idx,
|
|
const float* values, size_t num_features)
|
|
: col_ptr_(col_ptr),
|
|
row_idx_(row_idx),
|
|
values_(values),
|
|
num_features_(num_features) {}
|
|
|
|
private:
|
|
class Line {
|
|
public:
|
|
Line(size_t col_idx, size_t size, const unsigned* row_idx,
|
|
const float* values)
|
|
: col_idx_(col_idx), size_(size), row_idx_(row_idx), values_(values) {}
|
|
|
|
size_t Size() const { return size_; }
|
|
COOTuple GetElement(size_t idx) const {
|
|
return COOTuple{row_idx_[idx], col_idx_, values_[idx]};
|
|
}
|
|
|
|
private:
|
|
size_t col_idx_;
|
|
size_t size_;
|
|
const unsigned* row_idx_;
|
|
const float* values_;
|
|
};
|
|
|
|
public:
|
|
size_t Size() const { return num_features_; }
|
|
const Line GetLine(size_t idx) const {
|
|
size_t begin_offset = col_ptr_[idx];
|
|
size_t end_offset = col_ptr_[idx + 1];
|
|
return Line(idx, end_offset - begin_offset, &row_idx_[begin_offset],
|
|
&values_[begin_offset]);
|
|
}
|
|
|
|
private:
|
|
const size_t* col_ptr_;
|
|
const unsigned* row_idx_;
|
|
const float* values_;
|
|
size_t num_features_;
|
|
};
|
|
|
|
class CSCAdapter : public detail::SingleBatchDataIter<CSCAdapterBatch> {
|
|
public:
|
|
CSCAdapter(const size_t* col_ptr, const unsigned* row_idx,
|
|
const float* values, size_t num_features, size_t num_rows)
|
|
: batch_(col_ptr, row_idx, values, num_features),
|
|
num_rows_(num_rows),
|
|
num_columns_(num_features) {}
|
|
const CSCAdapterBatch& Value() const override { return batch_; }
|
|
|
|
// JVM package sends 0 as unknown
|
|
size_t NumRows() const {
|
|
return num_rows_ == 0 ? kAdapterUnknownSize : num_rows_;
|
|
}
|
|
size_t NumColumns() const { return num_columns_; }
|
|
|
|
private:
|
|
CSCAdapterBatch batch_;
|
|
size_t num_rows_;
|
|
size_t num_columns_;
|
|
};
|
|
|
|
class DataTableAdapterBatch : public detail::NoMetaInfo {
|
|
public:
|
|
DataTableAdapterBatch(void** data, const char** feature_stypes,
|
|
size_t num_rows, size_t num_features)
|
|
: data_(data),
|
|
feature_stypes_(feature_stypes),
|
|
num_features_(num_features),
|
|
num_rows_(num_rows) {}
|
|
|
|
private:
|
|
enum class DTType : uint8_t {
|
|
kFloat32 = 0,
|
|
kFloat64 = 1,
|
|
kBool8 = 2,
|
|
kInt32 = 3,
|
|
kInt8 = 4,
|
|
kInt16 = 5,
|
|
kInt64 = 6,
|
|
kUnknown = 7
|
|
};
|
|
|
|
DTType DTGetType(std::string type_string) const {
|
|
if (type_string == "float32") {
|
|
return DTType::kFloat32;
|
|
} else if (type_string == "float64") {
|
|
return DTType::kFloat64;
|
|
} else if (type_string == "bool8") {
|
|
return DTType::kBool8;
|
|
} else if (type_string == "int32") {
|
|
return DTType::kInt32;
|
|
} else if (type_string == "int8") {
|
|
return DTType::kInt8;
|
|
} else if (type_string == "int16") {
|
|
return DTType::kInt16;
|
|
} else if (type_string == "int64") {
|
|
return DTType::kInt64;
|
|
} else {
|
|
LOG(FATAL) << "Unknown data table type.";
|
|
return DTType::kUnknown;
|
|
}
|
|
}
|
|
|
|
class Line {
|
|
float DTGetValue(const void* column, DTType dt_type, size_t ridx) const {
|
|
float missing = std::numeric_limits<float>::quiet_NaN();
|
|
switch (dt_type) {
|
|
case DTType::kFloat32: {
|
|
float val = reinterpret_cast<const float*>(column)[ridx];
|
|
return std::isfinite(val) ? val : missing;
|
|
}
|
|
case DTType::kFloat64: {
|
|
double val = reinterpret_cast<const double*>(column)[ridx];
|
|
return std::isfinite(val) ? static_cast<float>(val) : missing;
|
|
}
|
|
case DTType::kBool8: {
|
|
bool val = reinterpret_cast<const bool*>(column)[ridx];
|
|
return static_cast<float>(val);
|
|
}
|
|
case DTType::kInt32: {
|
|
int32_t val = reinterpret_cast<const int32_t*>(column)[ridx];
|
|
return val != (-2147483647 - 1) ? static_cast<float>(val) : missing;
|
|
}
|
|
case DTType::kInt8: {
|
|
int8_t val = reinterpret_cast<const int8_t*>(column)[ridx];
|
|
return val != -128 ? static_cast<float>(val) : missing;
|
|
}
|
|
case DTType::kInt16: {
|
|
int16_t val = reinterpret_cast<const int16_t*>(column)[ridx];
|
|
return val != -32768 ? static_cast<float>(val) : missing;
|
|
}
|
|
case DTType::kInt64: {
|
|
int64_t val = reinterpret_cast<const int64_t*>(column)[ridx];
|
|
return val != -9223372036854775807 - 1 ? static_cast<float>(val)
|
|
: missing;
|
|
}
|
|
default: {
|
|
LOG(FATAL) << "Unknown data table type.";
|
|
return 0.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
Line(DTType type, size_t size, size_t column_idx, const void* column)
|
|
: type_(type), size_(size), column_idx_(column_idx), column_(column) {}
|
|
|
|
size_t Size() const { return size_; }
|
|
COOTuple GetElement(size_t idx) const {
|
|
return COOTuple{idx, column_idx_, DTGetValue(column_, type_, idx)};
|
|
}
|
|
|
|
private:
|
|
DTType type_;
|
|
size_t size_;
|
|
size_t column_idx_;
|
|
const void* column_;
|
|
};
|
|
|
|
public:
|
|
size_t Size() const { return num_features_; }
|
|
const Line GetLine(size_t idx) const {
|
|
return Line(DTGetType(feature_stypes_[idx]), num_rows_, idx, data_[idx]);
|
|
}
|
|
|
|
private:
|
|
void** data_;
|
|
const char** feature_stypes_;
|
|
size_t num_features_;
|
|
size_t num_rows_;
|
|
};
|
|
|
|
class DataTableAdapter
|
|
: public detail::SingleBatchDataIter<DataTableAdapterBatch> {
|
|
public:
|
|
DataTableAdapter(void** data, const char** feature_stypes, size_t num_rows,
|
|
size_t num_features)
|
|
: batch_(data, feature_stypes, num_rows, num_features),
|
|
num_rows_(num_rows),
|
|
num_columns_(num_features) {}
|
|
const DataTableAdapterBatch& Value() const override { return batch_; }
|
|
size_t NumRows() const { return num_rows_; }
|
|
size_t NumColumns() const { return num_columns_; }
|
|
|
|
private:
|
|
DataTableAdapterBatch batch_;
|
|
size_t num_rows_;
|
|
size_t num_columns_;
|
|
};
|
|
|
|
class FileAdapterBatch {
|
|
public:
|
|
class Line {
|
|
public:
|
|
Line(size_t row_idx, const uint32_t *feature_idx, const float *value,
|
|
size_t size)
|
|
: row_idx_(row_idx),
|
|
feature_idx_(feature_idx),
|
|
value_(value),
|
|
size_(size) {}
|
|
|
|
size_t Size() { return size_; }
|
|
COOTuple GetElement(size_t idx) {
|
|
float fvalue = value_ == nullptr ? 1.0f : value_[idx];
|
|
return COOTuple{row_idx_, feature_idx_[idx], fvalue};
|
|
}
|
|
|
|
private:
|
|
size_t row_idx_;
|
|
const uint32_t* feature_idx_;
|
|
const float* value_;
|
|
size_t size_;
|
|
};
|
|
FileAdapterBatch(const dmlc::RowBlock<uint32_t>* block, size_t row_offset)
|
|
: block_(block), row_offset_(row_offset) {}
|
|
Line GetLine(size_t idx) const {
|
|
auto begin = block_->offset[idx];
|
|
auto end = block_->offset[idx + 1];
|
|
return Line{idx + row_offset_, &block_->index[begin], &block_->value[begin],
|
|
end - begin};
|
|
}
|
|
const float* Labels() const { return block_->label; }
|
|
const float* Weights() const { return block_->weight; }
|
|
const uint64_t* Qid() const { return block_->qid; }
|
|
const float* BaseMargin() const { return nullptr; }
|
|
|
|
size_t Size() const { return block_->size; }
|
|
|
|
private:
|
|
const dmlc::RowBlock<uint32_t>* block_;
|
|
size_t row_offset_;
|
|
};
|
|
|
|
/** \brief FileAdapter wraps dmlc::parser to read files and provide access in a
|
|
* common interface. */
|
|
class FileAdapter : dmlc::DataIter<FileAdapterBatch> {
|
|
public:
|
|
explicit FileAdapter(dmlc::Parser<uint32_t>* parser) : parser_(parser) {}
|
|
|
|
const FileAdapterBatch& Value() const override { return *batch_.get(); }
|
|
void BeforeFirst() override {
|
|
batch_.reset();
|
|
parser_->BeforeFirst();
|
|
row_offset_ = 0;
|
|
}
|
|
bool Next() override {
|
|
bool next = parser_->Next();
|
|
batch_.reset(new FileAdapterBatch(&parser_->Value(), row_offset_));
|
|
row_offset_ += parser_->Value().size;
|
|
return next;
|
|
}
|
|
// Indicates a number of rows/columns must be inferred
|
|
size_t NumRows() const { return kAdapterUnknownSize; }
|
|
size_t NumColumns() const { return kAdapterUnknownSize; }
|
|
|
|
private:
|
|
size_t row_offset_{0};
|
|
std::unique_ptr<FileAdapterBatch> batch_;
|
|
dmlc::Parser<uint32_t>* parser_;
|
|
};
|
|
|
|
/*! \brief Data iterator that takes callback to return data, used in JVM package for
|
|
* accepting data iterator. */
|
|
template <typename DataIterHandle, typename XGBCallbackDataIterNext, typename XGBoostBatchCSR>
|
|
class IteratorAdapter : public dmlc::DataIter<FileAdapterBatch> {
|
|
public:
|
|
IteratorAdapter(DataIterHandle data_handle,
|
|
XGBCallbackDataIterNext* next_callback)
|
|
: columns_{data::kAdapterUnknownSize}, row_offset_{0},
|
|
at_first_(true),
|
|
data_handle_(data_handle), next_callback_(next_callback) {}
|
|
|
|
// override functions
|
|
void BeforeFirst() override {
|
|
CHECK(at_first_) << "Cannot reset IteratorAdapter";
|
|
}
|
|
|
|
bool Next() override {
|
|
if ((*next_callback_)(
|
|
data_handle_,
|
|
[](void *handle, XGBoostBatchCSR batch) -> int {
|
|
API_BEGIN();
|
|
static_cast<IteratorAdapter *>(handle)->SetData(batch);
|
|
API_END();
|
|
},
|
|
this) != 0) {
|
|
at_first_ = false;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
FileAdapterBatch const& Value() const override {
|
|
return *batch_.get();
|
|
}
|
|
|
|
// callback to set the data
|
|
void SetData(const XGBoostBatchCSR& batch) {
|
|
offset_.clear();
|
|
label_.clear();
|
|
weight_.clear();
|
|
index_.clear();
|
|
value_.clear();
|
|
offset_.insert(offset_.end(), batch.offset, batch.offset + batch.size + 1);
|
|
|
|
if (batch.label != nullptr) {
|
|
label_.insert(label_.end(), batch.label, batch.label + batch.size);
|
|
}
|
|
if (batch.weight != nullptr) {
|
|
weight_.insert(weight_.end(), batch.weight, batch.weight + batch.size);
|
|
}
|
|
if (batch.index != nullptr) {
|
|
index_.insert(index_.end(), batch.index + offset_[0],
|
|
batch.index + offset_.back());
|
|
}
|
|
if (batch.value != nullptr) {
|
|
value_.insert(value_.end(), batch.value + offset_[0],
|
|
batch.value + offset_.back());
|
|
}
|
|
if (offset_[0] != 0) {
|
|
size_t base = offset_[0];
|
|
for (size_t &item : offset_) {
|
|
item -= base;
|
|
}
|
|
}
|
|
CHECK(columns_ == data::kAdapterUnknownSize || columns_ == batch.columns)
|
|
<< "Number of columns between batches changed from " << columns_
|
|
<< " to " << batch.columns;
|
|
|
|
columns_ = batch.columns;
|
|
block_.size = batch.size;
|
|
|
|
block_.offset = dmlc::BeginPtr(offset_);
|
|
block_.label = dmlc::BeginPtr(label_);
|
|
block_.weight = dmlc::BeginPtr(weight_);
|
|
block_.qid = nullptr;
|
|
block_.field = nullptr;
|
|
block_.index = dmlc::BeginPtr(index_);
|
|
block_.value = dmlc::BeginPtr(value_);
|
|
|
|
batch_.reset(new FileAdapterBatch(&block_, row_offset_));
|
|
row_offset_ += offset_.size() - 1;
|
|
}
|
|
|
|
size_t NumColumns() const { return columns_; }
|
|
size_t NumRows() const { return kAdapterUnknownSize; }
|
|
|
|
private:
|
|
std::vector<size_t> offset_;
|
|
std::vector<dmlc::real_t> label_;
|
|
std::vector<dmlc::real_t> weight_;
|
|
std::vector<uint32_t> index_;
|
|
std::vector<dmlc::real_t> value_;
|
|
|
|
size_t columns_;
|
|
size_t row_offset_;
|
|
// at the beinning.
|
|
bool at_first_;
|
|
// handle to the iterator,
|
|
DataIterHandle data_handle_;
|
|
// call back to get the data.
|
|
XGBCallbackDataIterNext *next_callback_;
|
|
// internal Rowblock
|
|
dmlc::RowBlock<uint32_t> block_;
|
|
std::unique_ptr<FileAdapterBatch> batch_;
|
|
};
|
|
}; // namespace data
|
|
} // namespace xgboost
|
|
#endif // XGBOOST_DATA_ADAPTER_H_
|