* Apply Configurable to objective functions. * Apply Model to Learner and Regtree, gbm. * Add Load/SaveConfig to objs. * Refactor obj tests to use smart pointer. * Dummy methods for Save/Load Model.
273 lines
9.0 KiB
C++
273 lines
9.0 KiB
C++
/*!
|
|
* Copyright 2016-2018 XGBoost contributors
|
|
*/
|
|
#include <dmlc/filesystem.h>
|
|
#include <xgboost/logging.h>
|
|
#include <xgboost/json.h>
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <random>
|
|
#include <cinttypes>
|
|
#include "./helpers.h"
|
|
#include "xgboost/c_api.h"
|
|
|
|
#include "../../src/data/simple_csr_source.h"
|
|
#include "../../src/gbm/gbtree_model.h"
|
|
|
|
bool FileExists(const std::string& filename) {
|
|
struct stat st;
|
|
return stat(filename.c_str(), &st) == 0;
|
|
}
|
|
|
|
int64_t GetFileSize(const std::string& filename) {
|
|
struct stat st;
|
|
stat(filename.c_str(), &st);
|
|
return st.st_size;
|
|
}
|
|
|
|
void CreateSimpleTestData(const std::string& filename) {
|
|
CreateBigTestData(filename, 6);
|
|
}
|
|
|
|
void CreateBigTestData(const std::string& filename, size_t n_entries) {
|
|
std::ofstream fo(filename.c_str());
|
|
const size_t entries_per_row = 3;
|
|
size_t n_rows = (n_entries + entries_per_row - 1) / entries_per_row;
|
|
for (size_t i = 0; i < n_rows; ++i) {
|
|
const char* row = i % 2 == 0 ? " 0:0 1:10 2:20\n" : " 0:0 3:30 4:40\n";
|
|
fo << i << row;
|
|
}
|
|
}
|
|
|
|
void CheckObjFunctionImpl(std::unique_ptr<xgboost::ObjFunction> const& obj,
|
|
std::vector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights,
|
|
xgboost::MetaInfo info,
|
|
std::vector<xgboost::bst_float> out_grad,
|
|
std::vector<xgboost::bst_float> out_hess) {
|
|
xgboost::HostDeviceVector<xgboost::bst_float> in_preds(preds);
|
|
xgboost::HostDeviceVector<xgboost::GradientPair> out_gpair;
|
|
obj->GetGradient(in_preds, info, 1, &out_gpair);
|
|
std::vector<xgboost::GradientPair>& gpair = out_gpair.HostVector();
|
|
|
|
ASSERT_EQ(gpair.size(), in_preds.Size());
|
|
for (int i = 0; i < static_cast<int>(gpair.size()); ++i) {
|
|
EXPECT_NEAR(gpair[i].GetGrad(), out_grad[i], 0.01)
|
|
<< "Unexpected grad for pred=" << preds[i] << " label=" << labels[i]
|
|
<< " weight=" << weights[i];
|
|
EXPECT_NEAR(gpair[i].GetHess(), out_hess[i], 0.01)
|
|
<< "Unexpected hess for pred=" << preds[i] << " label=" << labels[i]
|
|
<< " weight=" << weights[i];
|
|
}
|
|
}
|
|
|
|
void CheckObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
|
|
std::vector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights,
|
|
std::vector<xgboost::bst_float> out_grad,
|
|
std::vector<xgboost::bst_float> out_hess) {
|
|
xgboost::MetaInfo info;
|
|
info.num_row_ = labels.size();
|
|
info.labels_.HostVector() = labels;
|
|
info.weights_.HostVector() = weights;
|
|
|
|
CheckObjFunctionImpl(obj, preds, labels, weights, info, out_grad, out_hess);
|
|
}
|
|
|
|
xgboost::Json CheckConfigReloadImpl(xgboost::Configurable* const configurable,
|
|
std::string name) {
|
|
xgboost::Json config_0 { xgboost::Object() };
|
|
configurable->SaveConfig(&config_0);
|
|
configurable->LoadConfig(config_0);
|
|
|
|
xgboost::Json config_1 { xgboost::Object() };
|
|
configurable->SaveConfig(&config_1);
|
|
|
|
std::string str_0, str_1;
|
|
xgboost::Json::Dump(config_0, &str_0);
|
|
xgboost::Json::Dump(config_1, &str_1);
|
|
EXPECT_EQ(str_0, str_1);
|
|
|
|
if (name != "") {
|
|
EXPECT_EQ(xgboost::get<xgboost::String>(config_1["name"]), name);
|
|
}
|
|
return config_1;
|
|
}
|
|
|
|
void CheckRankingObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
|
|
std::vector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights,
|
|
std::vector<xgboost::bst_uint> groups,
|
|
std::vector<xgboost::bst_float> out_grad,
|
|
std::vector<xgboost::bst_float> out_hess) {
|
|
xgboost::MetaInfo info;
|
|
info.num_row_ = labels.size();
|
|
info.labels_.HostVector() = labels;
|
|
info.weights_.HostVector() = weights;
|
|
info.group_ptr_ = groups;
|
|
|
|
CheckObjFunctionImpl(obj, preds, labels, weights, info, out_grad, out_hess);
|
|
}
|
|
|
|
|
|
xgboost::bst_float GetMetricEval(xgboost::Metric * metric,
|
|
xgboost::HostDeviceVector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights) {
|
|
xgboost::MetaInfo info;
|
|
info.num_row_ = labels.size();
|
|
info.labels_.HostVector() = labels;
|
|
info.weights_.HostVector() = weights;
|
|
|
|
return metric->Eval(preds, info, false);
|
|
}
|
|
|
|
namespace xgboost {
|
|
bool IsNear(std::vector<xgboost::bst_float>::const_iterator _beg1,
|
|
std::vector<xgboost::bst_float>::const_iterator _end1,
|
|
std::vector<xgboost::bst_float>::const_iterator _beg2) {
|
|
for (auto iter1 = _beg1, iter2 = _beg2; iter1 != _end1; ++iter1, ++iter2) {
|
|
if (std::abs(*iter1 - *iter2) > xgboost::kRtEps){
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
SimpleLCG::StateType SimpleLCG::operator()() {
|
|
state_ = (alpha_ * state_) % mod_;
|
|
return state_;
|
|
}
|
|
SimpleLCG::StateType SimpleLCG::Min() const {
|
|
return seed_ * alpha_;
|
|
}
|
|
SimpleLCG::StateType SimpleLCG::Max() const {
|
|
return max_value_;
|
|
}
|
|
|
|
std::shared_ptr<xgboost::DMatrix>* CreateDMatrix(int rows, int columns,
|
|
float sparsity, int seed) {
|
|
const float missing_value = -1;
|
|
std::vector<float> test_data(rows * columns);
|
|
|
|
xgboost::SimpleLCG gen(seed);
|
|
SimpleRealUniformDistribution<float> dis(0.0f, 1.0f);
|
|
|
|
for (auto &e : test_data) {
|
|
if (dis(&gen) < sparsity) {
|
|
e = missing_value;
|
|
} else {
|
|
e = dis(&gen);
|
|
}
|
|
}
|
|
|
|
DMatrixHandle handle;
|
|
XGDMatrixCreateFromMat(test_data.data(), rows, columns, missing_value,
|
|
&handle);
|
|
return static_cast<std::shared_ptr<xgboost::DMatrix> *>(handle);
|
|
}
|
|
|
|
std::unique_ptr<DMatrix> CreateSparsePageDMatrix(
|
|
size_t n_entries, size_t page_size, std::string tmp_file) {
|
|
// Create sufficiently large data to make two row pages
|
|
CreateBigTestData(tmp_file, n_entries);
|
|
std::unique_ptr<DMatrix> dmat { DMatrix::Load(
|
|
tmp_file + "#" + tmp_file + ".cache", true, false, "auto", page_size)};
|
|
EXPECT_TRUE(FileExists(tmp_file + ".cache.row.page"));
|
|
|
|
// Loop over the batches and count the records
|
|
int64_t batch_count = 0;
|
|
int64_t row_count = 0;
|
|
for (const auto &batch : dmat->GetBatches<xgboost::SparsePage>()) {
|
|
batch_count++;
|
|
row_count += batch.Size();
|
|
}
|
|
EXPECT_GE(batch_count, 2);
|
|
EXPECT_EQ(row_count, dmat->Info().num_row_);
|
|
|
|
return dmat;
|
|
}
|
|
|
|
std::unique_ptr<DMatrix> CreateSparsePageDMatrixWithRC(size_t n_rows, size_t n_cols,
|
|
size_t page_size, bool deterministic) {
|
|
if (!n_rows || !n_cols) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Create the svm file in a temp dir
|
|
dmlc::TemporaryDirectory tempdir;
|
|
const std::string tmp_file = tempdir.path + "/big.libsvm";
|
|
|
|
std::ofstream fo(tmp_file.c_str());
|
|
size_t cols_per_row = ((std::max(n_rows, n_cols) - 1) / std::min(n_rows, n_cols)) + 1;
|
|
int64_t rem_cols = n_cols;
|
|
size_t col_idx = 0;
|
|
|
|
// Random feature id generator
|
|
std::random_device rdev;
|
|
std::unique_ptr<std::mt19937> gen;
|
|
if (deterministic) {
|
|
// Seed it with a constant value for this configuration - without getting too fancy
|
|
// like ordered pairing functions and its likes to make it truely unique
|
|
gen.reset(new std::mt19937(n_rows * n_cols));
|
|
} else {
|
|
gen.reset(new std::mt19937(rdev()));
|
|
}
|
|
std::uniform_int_distribution<size_t> dis(1, n_cols);
|
|
|
|
for (size_t i = 0; i < n_rows; ++i) {
|
|
// Make sure that all cols are slotted in the first few rows; randomly distribute the
|
|
// rest
|
|
std::stringstream row_data;
|
|
fo << i;
|
|
size_t j = 0;
|
|
if (rem_cols > 0) {
|
|
for (; j < std::min(static_cast<size_t>(rem_cols), cols_per_row); ++j) {
|
|
row_data << " " << (col_idx+j) << ":" << (col_idx+j+1)*10;
|
|
}
|
|
rem_cols -= cols_per_row;
|
|
} else {
|
|
// Take some random number of colums in [1, n_cols] and slot them here
|
|
size_t ncols = dis(*gen);
|
|
for (; j < ncols; ++j) {
|
|
size_t fid = (col_idx+j) % n_cols;
|
|
row_data << " " << fid << ":" << (fid+1)*10;
|
|
}
|
|
}
|
|
col_idx += j;
|
|
|
|
fo << row_data.str() << "\n";
|
|
}
|
|
fo.close();
|
|
|
|
std::unique_ptr<DMatrix> dmat(DMatrix::Load(
|
|
tmp_file + "#" + tmp_file + ".cache", true, false, "auto", page_size));
|
|
EXPECT_TRUE(FileExists(tmp_file + ".cache.row.page"));
|
|
|
|
if (!page_size) {
|
|
std::unique_ptr<data::SimpleCSRSource> source(new data::SimpleCSRSource);
|
|
source->CopyFrom(dmat.get());
|
|
return std::unique_ptr<DMatrix>(DMatrix::Create(std::move(source)));
|
|
} else {
|
|
return dmat;
|
|
}
|
|
}
|
|
|
|
gbm::GBTreeModel CreateTestModel() {
|
|
std::vector<std::unique_ptr<RegTree>> trees;
|
|
trees.push_back(std::unique_ptr<RegTree>(new RegTree));
|
|
(*trees.back())[0].SetLeaf(1.5f);
|
|
(*trees.back()).Stat(0).sum_hess = 1.0f;
|
|
gbm::GBTreeModel model(0.5);
|
|
model.CommitModel(std::move(trees), 0);
|
|
model.param.num_output_group = 1;
|
|
model.base_margin = 0;
|
|
return model;
|
|
}
|
|
|
|
} // namespace xgboost
|