xgboost/src/objective/regression_loss.h

177 lines
6.2 KiB
C++

/*!
* Copyright 2017-2019 XGBoost contributors
*/
#ifndef XGBOOST_OBJECTIVE_REGRESSION_LOSS_H_
#define XGBOOST_OBJECTIVE_REGRESSION_LOSS_H_
#include <dmlc/omp.h>
#include <xgboost/logging.h>
#include <algorithm>
#include "../common/math.h"
namespace xgboost {
namespace obj {
// common regressions
// linear regression
struct LinearSquareLoss {
// duplication is necessary, as __device__ specifier
// cannot be made conditional on template parameter
XGBOOST_DEVICE static bst_float PredTransform(bst_float x) { return x; }
XGBOOST_DEVICE static bool CheckLabel(bst_float) { return true; }
XGBOOST_DEVICE static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
return predt - label;
}
XGBOOST_DEVICE static bst_float SecondOrderGradient(bst_float, bst_float) {
return 1.0f;
}
template <typename T>
static T PredTransform(T x) { return x; }
template <typename T>
static T FirstOrderGradient(T predt, T label) { return predt - label; }
template <typename T>
static T SecondOrderGradient(T predt, T label) { return T(1.0f); }
static bst_float ProbToMargin(bst_float base_score) { return base_score; }
static const char* LabelErrorMsg() { return ""; }
static const char* DefaultEvalMetric() { return "rmse"; }
static const char* Name() { return "reg:squarederror"; }
};
struct SquaredLogError {
XGBOOST_DEVICE static bst_float PredTransform(bst_float x) { return x; }
XGBOOST_DEVICE static bool CheckLabel(bst_float label) {
return label > -1;
}
XGBOOST_DEVICE static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
predt = fmaxf(predt, -1 + 1e-6); // ensure correct value for log1p
return (std::log1p(predt) - std::log1p(label)) / (predt + 1);
}
XGBOOST_DEVICE static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
predt = fmaxf(predt, -1 + 1e-6);
float res = (-std::log1p(predt) + std::log1p(label) + 1) /
std::pow(predt + 1, 2);
res = fmaxf(res, 1e-6f);
return res;
}
static bst_float ProbToMargin(bst_float base_score) { return base_score; }
static const char* LabelErrorMsg() {
return "label must be greater than -1 for rmsle so that log(label + 1) can be valid.";
}
static const char* DefaultEvalMetric() { return "rmsle"; }
static const char* Name() { return "reg:squaredlogerror"; }
};
// logistic loss for probability regression task
struct LogisticRegression {
// duplication is necessary, as __device__ specifier
// cannot be made conditional on template parameter
XGBOOST_DEVICE static bst_float PredTransform(bst_float x) { return common::Sigmoid(x); }
XGBOOST_DEVICE static bool CheckLabel(bst_float x) { return x >= 0.0f && x <= 1.0f; }
XGBOOST_DEVICE static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
return predt - label;
}
XGBOOST_DEVICE static bst_float SecondOrderGradient(bst_float predt, bst_float) {
const float eps = 1e-16f;
return fmaxf(predt * (1.0f - predt), eps);
}
template <typename T>
static T PredTransform(T x) { return common::Sigmoid(x); }
template <typename T>
static T FirstOrderGradient(T predt, T label) { return predt - label; }
template <typename T>
static T SecondOrderGradient(T predt, T label) {
const T eps = T(1e-16f);
return std::max(predt * (T(1.0f) - predt), eps);
}
static bst_float ProbToMargin(bst_float base_score) {
CHECK(base_score > 0.0f && base_score < 1.0f)
<< "base_score must be in (0,1) for logistic loss, got: " << base_score;
return -logf(1.0f / base_score - 1.0f);
}
static const char* LabelErrorMsg() {
return "label must be in [0,1] for logistic regression";
}
static const char* DefaultEvalMetric() { return "rmse"; }
static const char* Name() { return "reg:logistic"; }
};
struct PseudoHuberError {
XGBOOST_DEVICE static bst_float PredTransform(bst_float x) {
return x;
}
XGBOOST_DEVICE static bool CheckLabel(bst_float) {
return true;
}
XGBOOST_DEVICE static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
const float z = predt - label;
const float scale_sqrt = std::sqrt(1 + std::pow(z, 2));
return z/scale_sqrt;
}
XGBOOST_DEVICE static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
const float scale = 1 + std::pow(predt - label, 2);
const float scale_sqrt = std::sqrt(scale);
return 1/(scale*scale_sqrt);
}
static bst_float ProbToMargin(bst_float base_score) {
return base_score;
}
static const char* LabelErrorMsg() {
return "";
}
static const char* DefaultEvalMetric() {
return "mphe";
}
static const char* Name() {
return "reg:pseudohubererror";
}
};
// logistic loss for binary classification task
struct LogisticClassification : public LogisticRegression {
static const char* DefaultEvalMetric() { return "logloss"; }
static const char* Name() { return "binary:logistic"; }
};
// logistic loss, but predict un-transformed margin
struct LogisticRaw : public LogisticRegression {
// duplication is necessary, as __device__ specifier
// cannot be made conditional on template parameter
XGBOOST_DEVICE static bst_float PredTransform(bst_float x) { return x; }
XGBOOST_DEVICE static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
predt = common::Sigmoid(predt);
return predt - label;
}
XGBOOST_DEVICE static bst_float SecondOrderGradient(bst_float predt, bst_float) {
const float eps = 1e-16f;
predt = common::Sigmoid(predt);
return fmaxf(predt * (1.0f - predt), eps);
}
template <typename T>
static T PredTransform(T x) { return x; }
template <typename T>
static T FirstOrderGradient(T predt, T label) {
predt = common::Sigmoid(predt);
return predt - label;
}
template <typename T>
static T SecondOrderGradient(T predt, T label) {
const T eps = T(1e-16f);
predt = common::Sigmoid(predt);
return std::max(predt * (T(1.0f) - predt), eps);
}
static bst_float ProbToMargin(bst_float base_score) {
return base_score;
}
static const char* DefaultEvalMetric() { return "logloss"; }
static const char* Name() { return "binary:logitraw"; }
};
} // namespace obj
} // namespace xgboost
#endif // XGBOOST_OBJECTIVE_REGRESSION_LOSS_H_