xgboost/src/objective/rank_obj.cu
Jiaming Yuan 1c8fdf2218
Remove use of device_idx in dh::LaunchN. (#7063)
It's an unused parameter, removing it can make the CI log more readable.
2021-06-29 11:37:26 +08:00

963 lines
38 KiB
Plaintext

/*!
* Copyright 2015-2019 XGBoost contributors
*/
#include <dmlc/omp.h>
#include <dmlc/timer.h>
#include <xgboost/logging.h>
#include <xgboost/objective.h>
#include <vector>
#include <algorithm>
#include <utility>
#include "xgboost/json.h"
#include "xgboost/parameter.h"
#include "../common/math.h"
#include "../common/random.h"
#if defined(__CUDACC__)
#include <thrust/sort.h>
#include <thrust/gather.h>
#include <thrust/iterator/discard_iterator.h>
#include <thrust/random/uniform_int_distribution.h>
#include <thrust/random/linear_congruential_engine.h>
#include <cub/util_allocator.cuh>
#include "../common/device_helpers.cuh"
#endif
namespace xgboost {
namespace obj {
#if defined(XGBOOST_USE_CUDA) && !defined(GTEST_TEST)
DMLC_REGISTRY_FILE_TAG(rank_obj_gpu);
#endif // defined(XGBOOST_USE_CUDA)
struct LambdaRankParam : public XGBoostParameter<LambdaRankParam> {
size_t num_pairsample;
float fix_list_weight;
// declare parameters
DMLC_DECLARE_PARAMETER(LambdaRankParam) {
DMLC_DECLARE_FIELD(num_pairsample).set_lower_bound(1).set_default(1)
.describe("Number of pair generated for each instance.");
DMLC_DECLARE_FIELD(fix_list_weight).set_lower_bound(0.0f).set_default(0.0f)
.describe("Normalize the weight of each list by this value,"
" if equals 0, no effect will happen");
}
};
#if defined(__CUDACC__)
// Helper functions
template <typename T>
XGBOOST_DEVICE __forceinline__ uint32_t
CountNumItemsToTheLeftOf(const T *__restrict__ items, uint32_t n, T v) {
return thrust::lower_bound(thrust::seq, items, items + n, v,
thrust::greater<T>()) -
items;
}
template <typename T>
XGBOOST_DEVICE __forceinline__ uint32_t
CountNumItemsToTheRightOf(const T *__restrict__ items, uint32_t n, T v) {
return n - (thrust::upper_bound(thrust::seq, items, items + n, v,
thrust::greater<T>()) -
items);
}
#endif
/*! \brief helper information in a list */
struct ListEntry {
/*! \brief the predict score we in the data */
bst_float pred;
/*! \brief the actual label of the entry */
bst_float label;
/*! \brief row index in the data matrix */
unsigned rindex;
// constructor
ListEntry(bst_float pred, bst_float label, unsigned rindex)
: pred(pred), label(label), rindex(rindex) {}
// comparator by prediction
inline static bool CmpPred(const ListEntry &a, const ListEntry &b) {
return a.pred > b.pred;
}
// comparator by label
inline static bool CmpLabel(const ListEntry &a, const ListEntry &b) {
return a.label > b.label;
}
};
/*! \brief a pair in the lambda rank */
struct LambdaPair {
/*! \brief positive index: this is a position in the list */
unsigned pos_index;
/*! \brief negative index: this is a position in the list */
unsigned neg_index;
/*! \brief weight to be filled in */
bst_float weight;
// constructor
LambdaPair(unsigned pos_index, unsigned neg_index)
: pos_index(pos_index), neg_index(neg_index), weight(1.0f) {}
// constructor
LambdaPair(unsigned pos_index, unsigned neg_index, bst_float weight)
: pos_index(pos_index), neg_index(neg_index), weight(weight) {}
};
class PairwiseLambdaWeightComputer {
public:
/*!
* \brief get lambda weight for existing pairs - for pairwise objective
* \param list a list that is sorted by pred score
* \param io_pairs record of pairs, containing the pairs to fill in weights
*/
static void GetLambdaWeight(const std::vector<ListEntry>&,
std::vector<LambdaPair>*) {}
static char const* Name() {
return "rank:pairwise";
}
#if defined(__CUDACC__)
PairwiseLambdaWeightComputer(const bst_float*,
const bst_float*,
const dh::SegmentSorter<float>&) {}
class PairwiseLambdaWeightMultiplier {
public:
// Adjust the items weight by this value
__device__ __forceinline__ bst_float GetWeight(uint32_t gidx, int pidx, int nidx) const {
return 1.0f;
}
};
inline const PairwiseLambdaWeightMultiplier GetWeightMultiplier() const {
return {};
}
#endif
};
#if defined(__CUDACC__)
class BaseLambdaWeightMultiplier {
public:
BaseLambdaWeightMultiplier(const dh::SegmentSorter<float> &segment_label_sorter,
const dh::SegmentSorter<float> &segment_pred_sorter)
: dsorted_labels_(segment_label_sorter.GetItemsSpan()),
dorig_pos_(segment_label_sorter.GetOriginalPositionsSpan()),
dgroups_(segment_label_sorter.GetGroupsSpan()),
dindexable_sorted_preds_pos_(segment_pred_sorter.GetIndexableSortedPositionsSpan()) {}
protected:
const common::Span<const float> dsorted_labels_; // Labels sorted within a group
const common::Span<const uint32_t> dorig_pos_; // Original indices of the labels
// before they are sorted
const common::Span<const uint32_t> dgroups_; // The group indices
// Where can a prediction for a label be found in the original array, when they are sorted
const common::Span<const uint32_t> dindexable_sorted_preds_pos_;
};
// While computing the weight that needs to be adjusted by this ranking objective, we need
// to figure out where positive and negative labels chosen earlier exists, if the group
// were to be sorted by its predictions. To accommodate this, we employ the following algorithm.
// For a given group, let's assume the following:
// labels: 1 5 9 2 4 8 0 7 6 3
// predictions: 1 9 0 8 2 7 3 6 5 4
// position: 0 1 2 3 4 5 6 7 8 9
//
// After label sort:
// labels: 9 8 7 6 5 4 3 2 1 0
// position: 2 5 7 8 1 4 9 3 0 6
//
// After prediction sort:
// predictions: 9 8 7 6 5 4 3 2 1 0
// position: 1 3 5 7 8 9 6 4 0 2
//
// If a sorted label at position 'x' is chosen, then we need to find out where the prediction
// for this label 'x' exists, if the group were to be sorted by predictions.
// We first take the sorted prediction positions:
// position: 1 3 5 7 8 9 6 4 0 2
// at indices: 0 1 2 3 4 5 6 7 8 9
//
// We create a sorted prediction positional array, such that value at position 'x' gives
// us the position in the sorted prediction array where its related prediction lies.
// dindexable_sorted_preds_pos_: 8 0 9 1 7 2 6 3 4 5
// at indices: 0 1 2 3 4 5 6 7 8 9
// Basically, swap the previous 2 arrays, sort the indices and reorder positions
// for an O(1) lookup using the position where the sorted label exists.
//
// This type does that using the SegmentSorter
class IndexablePredictionSorter {
public:
IndexablePredictionSorter(const bst_float *dpreds,
const dh::SegmentSorter<float> &segment_label_sorter) {
// Sort the predictions first
segment_pred_sorter_.SortItems(dpreds, segment_label_sorter.GetNumItems(),
segment_label_sorter.GetGroupSegmentsSpan());
// Create an index for the sorted prediction positions
segment_pred_sorter_.CreateIndexableSortedPositions();
}
inline const dh::SegmentSorter<float> &GetPredictionSorter() const {
return segment_pred_sorter_;
}
private:
dh::SegmentSorter<float> segment_pred_sorter_; // For sorting the predictions
};
#endif
// beta version: NDCG lambda rank
class NDCGLambdaWeightComputer
#if defined(__CUDACC__)
: public IndexablePredictionSorter
#endif
{
public:
#if defined(__CUDACC__)
// This function object computes the item's DCG value
class ComputeItemDCG : public thrust::unary_function<uint32_t, float> {
public:
XGBOOST_DEVICE ComputeItemDCG(const common::Span<const float> &dsorted_labels,
const common::Span<const uint32_t> &dgroups,
const common::Span<const uint32_t> &gidxs)
: dsorted_labels_(dsorted_labels),
dgroups_(dgroups),
dgidxs_(gidxs) {}
// Compute DCG for the item at 'idx'
__device__ __forceinline__ float operator()(uint32_t idx) const {
return ComputeItemDCGWeight(dsorted_labels_[idx], idx - dgroups_[dgidxs_[idx]]);
}
private:
const common::Span<const float> dsorted_labels_; // Labels sorted within a group
const common::Span<const uint32_t> dgroups_; // The group indices - where each group
// begins and ends
const common::Span<const uint32_t> dgidxs_; // The group each items belongs to
};
// Type containing device pointers that can be cheaply copied on the kernel
class NDCGLambdaWeightMultiplier : public BaseLambdaWeightMultiplier {
public:
NDCGLambdaWeightMultiplier(const dh::SegmentSorter<float> &segment_label_sorter,
const NDCGLambdaWeightComputer &lwc)
: BaseLambdaWeightMultiplier(segment_label_sorter, lwc.GetPredictionSorter()),
dgroup_dcgs_(lwc.GetGroupDcgsSpan()) {}
// Adjust the items weight by this value
__device__ __forceinline__ bst_float GetWeight(uint32_t gidx, int pidx, int nidx) const {
if (dgroup_dcgs_[gidx] == 0.0) return 0.0f;
uint32_t group_begin = dgroups_[gidx];
auto pos_lab_orig_posn = dorig_pos_[pidx];
auto neg_lab_orig_posn = dorig_pos_[nidx];
KERNEL_CHECK(pos_lab_orig_posn != neg_lab_orig_posn);
// Note: the label positive and negative indices are relative to the entire dataset.
// Hence, scale them back to an index within the group
auto pos_pred_pos = dindexable_sorted_preds_pos_[pos_lab_orig_posn] - group_begin;
auto neg_pred_pos = dindexable_sorted_preds_pos_[neg_lab_orig_posn] - group_begin;
return NDCGLambdaWeightComputer::ComputeDeltaWeight(
pos_pred_pos, neg_pred_pos,
static_cast<int>(dsorted_labels_[pidx]), static_cast<int>(dsorted_labels_[nidx]),
dgroup_dcgs_[gidx]);
}
private:
const common::Span<const float> dgroup_dcgs_; // Group DCG values
};
NDCGLambdaWeightComputer(const bst_float *dpreds,
const bst_float*,
const dh::SegmentSorter<float> &segment_label_sorter)
: IndexablePredictionSorter(dpreds, segment_label_sorter),
dgroup_dcg_(segment_label_sorter.GetNumGroups(), 0.0f),
weight_multiplier_(segment_label_sorter, *this) {
const auto &group_segments = segment_label_sorter.GetGroupSegmentsSpan();
// Allocator to be used for managing space overhead while performing transformed reductions
dh::XGBCachingDeviceAllocator<char> alloc;
// Compute each elements DCG values and reduce them across groups concurrently.
auto end_range =
thrust::reduce_by_key(thrust::cuda::par(alloc),
dh::tcbegin(group_segments), dh::tcend(group_segments),
thrust::make_transform_iterator(
// The indices need not be sequential within a group, as we care only
// about the sum of items DCG values within a group
dh::tcbegin(segment_label_sorter.GetOriginalPositionsSpan()),
ComputeItemDCG(segment_label_sorter.GetItemsSpan(),
segment_label_sorter.GetGroupsSpan(),
group_segments)),
thrust::make_discard_iterator(), // We don't care for the group indices
dgroup_dcg_.begin()); // Sum of the item's DCG values in the group
CHECK_EQ(static_cast<unsigned>(end_range.second - dgroup_dcg_.begin()), dgroup_dcg_.size());
}
inline const common::Span<const float> GetGroupDcgsSpan() const {
return { dgroup_dcg_.data().get(), dgroup_dcg_.size() };
}
inline const NDCGLambdaWeightMultiplier GetWeightMultiplier() const {
return weight_multiplier_;
}
#endif
static void GetLambdaWeight(const std::vector<ListEntry> &sorted_list,
std::vector<LambdaPair> *io_pairs) {
std::vector<LambdaPair> &pairs = *io_pairs;
float IDCG; // NOLINT
{
std::vector<bst_float> labels(sorted_list.size());
for (size_t i = 0; i < sorted_list.size(); ++i) {
labels[i] = sorted_list[i].label;
}
std::stable_sort(labels.begin(), labels.end(), std::greater<>());
IDCG = ComputeGroupDCGWeight(&labels[0], labels.size());
}
if (IDCG == 0.0) {
for (auto & pair : pairs) {
pair.weight = 0.0f;
}
} else {
for (auto & pair : pairs) {
unsigned pos_idx = pair.pos_index;
unsigned neg_idx = pair.neg_index;
pair.weight *= ComputeDeltaWeight(pos_idx, neg_idx,
sorted_list[pos_idx].label, sorted_list[neg_idx].label,
IDCG);
}
}
}
static char const* Name() {
return "rank:ndcg";
}
inline static bst_float ComputeGroupDCGWeight(const float *sorted_labels, uint32_t size) {
double sumdcg = 0.0;
for (uint32_t i = 0; i < size; ++i) {
sumdcg += ComputeItemDCGWeight(sorted_labels[i], i);
}
return static_cast<bst_float>(sumdcg);
}
private:
XGBOOST_DEVICE inline static bst_float ComputeItemDCGWeight(unsigned label, uint32_t idx) {
return (label != 0) ? (((1 << label) - 1) / std::log2(static_cast<bst_float>(idx + 2))) : 0;
}
// Compute the weight adjustment for an item within a group:
// pos_pred_pos => Where does the positive label live, had the list been sorted by prediction
// neg_pred_pos => Where does the negative label live, had the list been sorted by prediction
// pos_label => positive label value from sorted label list
// neg_label => negative label value from sorted label list
XGBOOST_DEVICE inline static bst_float ComputeDeltaWeight(uint32_t pos_pred_pos,
uint32_t neg_pred_pos,
int pos_label, int neg_label,
float idcg) {
float pos_loginv = 1.0f / std::log2(pos_pred_pos + 2.0f);
float neg_loginv = 1.0f / std::log2(neg_pred_pos + 2.0f);
bst_float original = ((1 << pos_label) - 1) * pos_loginv + ((1 << neg_label) - 1) * neg_loginv;
float changed = ((1 << neg_label) - 1) * pos_loginv + ((1 << pos_label) - 1) * neg_loginv;
bst_float delta = (original - changed) * (1.0f / idcg);
if (delta < 0.0f) delta = - delta;
return delta;
}
#if defined(__CUDACC__)
dh::caching_device_vector<float> dgroup_dcg_;
// This computes the adjustment to the weight
const NDCGLambdaWeightMultiplier weight_multiplier_;
#endif
};
class MAPLambdaWeightComputer
#if defined(__CUDACC__)
: public IndexablePredictionSorter
#endif
{
public:
struct MAPStats {
/*! \brief the accumulated precision */
float ap_acc{0.0f};
/*!
* \brief the accumulated precision,
* assuming a positive instance is missing
*/
float ap_acc_miss{0.0f};
/*!
* \brief the accumulated precision,
* assuming that one more positive instance is inserted ahead
*/
float ap_acc_add{0.0f};
/* \brief the accumulated positive instance count */
float hits{0.0f};
XGBOOST_DEVICE MAPStats() {} // NOLINT
XGBOOST_DEVICE MAPStats(float ap_acc, float ap_acc_miss, float ap_acc_add, float hits)
: ap_acc(ap_acc), ap_acc_miss(ap_acc_miss), ap_acc_add(ap_acc_add), hits(hits) {}
// For prefix scan
XGBOOST_DEVICE MAPStats operator +(const MAPStats &v1) const {
return {ap_acc + v1.ap_acc, ap_acc_miss + v1.ap_acc_miss,
ap_acc_add + v1.ap_acc_add, hits + v1.hits};
}
// For test purposes - compare for equality
XGBOOST_DEVICE bool operator ==(const MAPStats &rhs) const {
return ap_acc == rhs.ap_acc && ap_acc_miss == rhs.ap_acc_miss &&
ap_acc_add == rhs.ap_acc_add && hits == rhs.hits;
}
};
private:
template <typename T>
XGBOOST_DEVICE inline static void Swap(T &v0, T &v1) {
#if defined(__CUDACC__)
thrust::swap(v0, v1);
#else
std::swap(v0, v1);
#endif
}
/*!
* \brief Obtain the delta MAP by trying to switch the positions of labels in pos_pred_pos or
* neg_pred_pos when sorted by predictions
* \param pos_pred_pos positive label's prediction value position when the groups prediction
* values are sorted
* \param neg_pred_pos negative label's prediction value position when the groups prediction
* values are sorted
* \param pos_label, neg_label the chosen positive and negative labels
* \param p_map_stats a vector containing the accumulated precisions for each position in a list
* \param map_stats_size size of the accumulated precisions vector
*/
XGBOOST_DEVICE inline static bst_float GetLambdaMAP(
int pos_pred_pos, int neg_pred_pos,
bst_float pos_label, bst_float neg_label,
const MAPStats *p_map_stats, uint32_t map_stats_size) {
if (pos_pred_pos == neg_pred_pos || p_map_stats[map_stats_size - 1].hits == 0) {
return 0.0f;
}
if (pos_pred_pos > neg_pred_pos) {
Swap(pos_pred_pos, neg_pred_pos);
Swap(pos_label, neg_label);
}
bst_float original = p_map_stats[neg_pred_pos].ap_acc;
if (pos_pred_pos != 0) original -= p_map_stats[pos_pred_pos - 1].ap_acc;
bst_float changed = 0;
bst_float label1 = pos_label > 0.0f ? 1.0f : 0.0f;
bst_float label2 = neg_label > 0.0f ? 1.0f : 0.0f;
if (label1 == label2) {
return 0.0;
} else if (label1 < label2) {
changed += p_map_stats[neg_pred_pos - 1].ap_acc_add - p_map_stats[pos_pred_pos].ap_acc_add;
changed += (p_map_stats[pos_pred_pos].hits + 1.0f) / (pos_pred_pos + 1);
} else {
changed += p_map_stats[neg_pred_pos - 1].ap_acc_miss - p_map_stats[pos_pred_pos].ap_acc_miss;
changed += p_map_stats[neg_pred_pos].hits / (neg_pred_pos + 1);
}
bst_float ans = (changed - original) / (p_map_stats[map_stats_size - 1].hits);
if (ans < 0) ans = -ans;
return ans;
}
public:
/*
* \brief obtain preprocessing results for calculating delta MAP
* \param sorted_list the list containing entry information
* \param map_stats a vector containing the accumulated precisions for each position in a list
*/
inline static void GetMAPStats(const std::vector<ListEntry> &sorted_list,
std::vector<MAPStats> *p_map_acc) {
std::vector<MAPStats> &map_acc = *p_map_acc;
map_acc.resize(sorted_list.size());
bst_float hit = 0, acc1 = 0, acc2 = 0, acc3 = 0;
for (size_t i = 1; i <= sorted_list.size(); ++i) {
if (sorted_list[i - 1].label > 0.0f) {
hit++;
acc1 += hit / i;
acc2 += (hit - 1) / i;
acc3 += (hit + 1) / i;
}
map_acc[i - 1] = MAPStats(acc1, acc2, acc3, hit);
}
}
static char const* Name() {
return "rank:map";
}
static void GetLambdaWeight(const std::vector<ListEntry> &sorted_list,
std::vector<LambdaPair> *io_pairs) {
std::vector<LambdaPair> &pairs = *io_pairs;
std::vector<MAPStats> map_stats;
GetMAPStats(sorted_list, &map_stats);
for (auto & pair : pairs) {
pair.weight *=
GetLambdaMAP(pair.pos_index, pair.neg_index,
sorted_list[pair.pos_index].label, sorted_list[pair.neg_index].label,
&map_stats[0], map_stats.size());
}
}
#if defined(__CUDACC__)
MAPLambdaWeightComputer(const bst_float *dpreds,
const bst_float *dlabels,
const dh::SegmentSorter<float> &segment_label_sorter)
: IndexablePredictionSorter(dpreds, segment_label_sorter),
dmap_stats_(segment_label_sorter.GetNumItems(), MAPStats()),
weight_multiplier_(segment_label_sorter, *this) {
this->CreateMAPStats(dlabels, segment_label_sorter);
}
void CreateMAPStats(const bst_float *dlabels,
const dh::SegmentSorter<float> &segment_label_sorter) {
// For each group, go through the sorted prediction positions, and look up its corresponding
// label from the unsorted labels (from the original label list)
// For each item in the group, compute its MAP stats.
// Interleave the computation of map stats amongst different groups.
// First, determine postive labels in the dataset individually
auto nitems = segment_label_sorter.GetNumItems();
dh::caching_device_vector<uint32_t> dhits(nitems, 0);
// Original positions of the predictions after they have been sorted
const auto &pred_original_pos = this->GetPredictionSorter().GetOriginalPositionsSpan();
// Unsorted labels
const float *unsorted_labels = dlabels;
auto DeterminePositiveLabelLambda = [=] __device__(uint32_t idx) {
return (unsorted_labels[pred_original_pos[idx]] > 0.0f) ? 1 : 0;
}; // NOLINT
thrust::transform(thrust::make_counting_iterator(static_cast<uint32_t>(0)),
thrust::make_counting_iterator(nitems),
dhits.begin(),
DeterminePositiveLabelLambda);
// Allocator to be used by sort for managing space overhead while performing prefix scans
dh::XGBCachingDeviceAllocator<char> alloc;
// Next, prefix scan the positive labels that are segmented to accumulate them.
// This is required for computing the accumulated precisions
const auto &group_segments = segment_label_sorter.GetGroupSegmentsSpan();
// Data segmented into different groups...
thrust::inclusive_scan_by_key(thrust::cuda::par(alloc),
dh::tcbegin(group_segments), dh::tcend(group_segments),
dhits.begin(), // Input value
dhits.begin()); // In-place scan
// Compute accumulated precisions for each item, assuming positive and
// negative instances are missing.
// But first, compute individual item precisions
const auto *dhits_arr = dhits.data().get();
// Group info on device
const auto &dgroups = segment_label_sorter.GetGroupsSpan();
auto ComputeItemPrecisionLambda = [=] __device__(uint32_t idx) {
if (unsorted_labels[pred_original_pos[idx]] > 0.0f) {
auto idx_within_group = (idx - dgroups[group_segments[idx]]) + 1;
return MAPStats{static_cast<float>(dhits_arr[idx]) / idx_within_group,
static_cast<float>(dhits_arr[idx] - 1) / idx_within_group,
static_cast<float>(dhits_arr[idx] + 1) / idx_within_group,
1.0f};
}
return MAPStats{};
}; // NOLINT
thrust::transform(thrust::make_counting_iterator(static_cast<uint32_t>(0)),
thrust::make_counting_iterator(nitems),
this->dmap_stats_.begin(),
ComputeItemPrecisionLambda);
// Lastly, compute the accumulated precisions for all the items segmented by groups.
// The precisions are accumulated within each group
thrust::inclusive_scan_by_key(thrust::cuda::par(alloc),
dh::tcbegin(group_segments), dh::tcend(group_segments),
this->dmap_stats_.begin(), // Input map stats
this->dmap_stats_.begin()); // In-place scan and output here
}
inline const common::Span<const MAPStats> GetMapStatsSpan() const {
return { dmap_stats_.data().get(), dmap_stats_.size() };
}
// Type containing device pointers that can be cheaply copied on the kernel
class MAPLambdaWeightMultiplier : public BaseLambdaWeightMultiplier {
public:
MAPLambdaWeightMultiplier(const dh::SegmentSorter<float> &segment_label_sorter,
const MAPLambdaWeightComputer &lwc)
: BaseLambdaWeightMultiplier(segment_label_sorter, lwc.GetPredictionSorter()),
dmap_stats_(lwc.GetMapStatsSpan()) {}
// Adjust the items weight by this value
__device__ __forceinline__ bst_float GetWeight(uint32_t gidx, int pidx, int nidx) const {
uint32_t group_begin = dgroups_[gidx];
uint32_t group_end = dgroups_[gidx + 1];
auto pos_lab_orig_posn = dorig_pos_[pidx];
auto neg_lab_orig_posn = dorig_pos_[nidx];
KERNEL_CHECK(pos_lab_orig_posn != neg_lab_orig_posn);
// Note: the label positive and negative indices are relative to the entire dataset.
// Hence, scale them back to an index within the group
auto pos_pred_pos = dindexable_sorted_preds_pos_[pos_lab_orig_posn] - group_begin;
auto neg_pred_pos = dindexable_sorted_preds_pos_[neg_lab_orig_posn] - group_begin;
return MAPLambdaWeightComputer::GetLambdaMAP(
pos_pred_pos, neg_pred_pos,
dsorted_labels_[pidx], dsorted_labels_[nidx],
&dmap_stats_[group_begin], group_end - group_begin);
}
private:
common::Span<const MAPStats> dmap_stats_; // Start address of the map stats for every sorted
// prediction value
};
inline const MAPLambdaWeightMultiplier GetWeightMultiplier() const { return weight_multiplier_; }
private:
dh::caching_device_vector<MAPStats> dmap_stats_;
// This computes the adjustment to the weight
const MAPLambdaWeightMultiplier weight_multiplier_;
#endif
};
#if defined(__CUDACC__)
class SortedLabelList : dh::SegmentSorter<float> {
private:
const LambdaRankParam &param_; // Objective configuration
public:
explicit SortedLabelList(const LambdaRankParam &param)
: param_(param) {}
// Sort the labels that are grouped by 'groups'
void Sort(const HostDeviceVector<bst_float> &dlabels, const std::vector<uint32_t> &groups) {
this->SortItems(dlabels.ConstDevicePointer(), dlabels.Size(), groups);
}
// This kernel can only run *after* the kernel in sort is completed, as they
// use the default stream
template <typename LambdaWeightComputerT>
void ComputeGradients(const bst_float *dpreds, // Unsorted predictions
const bst_float *dlabels, // Unsorted labels
const HostDeviceVector<bst_float> &weights,
int iter,
GradientPair *out_gpair,
float weight_normalization_factor) {
// Group info on device
const auto &dgroups = this->GetGroupsSpan();
uint32_t ngroups = this->GetNumGroups() + 1;
uint32_t total_items = this->GetNumItems();
uint32_t niter = param_.num_pairsample * total_items;
float fix_list_weight = param_.fix_list_weight;
const auto &original_pos = this->GetOriginalPositionsSpan();
uint32_t num_weights = weights.Size();
auto dweights = num_weights ? weights.ConstDevicePointer() : nullptr;
const auto &sorted_labels = this->GetItemsSpan();
// This is used to adjust the weight of different elements based on the different ranking
// objective function policies
LambdaWeightComputerT weight_computer(dpreds, dlabels, *this);
auto wmultiplier = weight_computer.GetWeightMultiplier();
int device_id = -1;
dh::safe_cuda(cudaGetDevice(&device_id));
// For each instance in the group, compute the gradient pair concurrently
dh::LaunchN(niter, nullptr, [=] __device__(uint32_t idx) {
// First, determine the group 'idx' belongs to
uint32_t item_idx = idx % total_items;
uint32_t group_idx =
thrust::upper_bound(thrust::seq, dgroups.begin(),
dgroups.begin() + ngroups, item_idx) -
dgroups.begin();
// Span of this group within the larger labels/predictions sorted tuple
uint32_t group_begin = dgroups[group_idx - 1];
uint32_t group_end = dgroups[group_idx];
uint32_t total_group_items = group_end - group_begin;
// Are the labels diverse enough? If they are all the same, then there is nothing to pick
// from another group - bail sooner
if (sorted_labels[group_begin] == sorted_labels[group_end - 1]) return;
// Find the number of labels less than and greater than the current label
// at the sorted index position item_idx
uint32_t nleft = CountNumItemsToTheLeftOf(
sorted_labels.data() + group_begin, item_idx - group_begin + 1, sorted_labels[item_idx]);
uint32_t nright = CountNumItemsToTheRightOf(
sorted_labels.data() + item_idx, group_end - item_idx, sorted_labels[item_idx]);
// Create a minstd_rand object to act as our source of randomness
thrust::minstd_rand rng((iter + 1) * 1111);
rng.discard(((idx / total_items) * total_group_items) + item_idx - group_begin);
// Create a uniform_int_distribution to produce a sample from outside of the
// present label group
thrust::uniform_int_distribution<int> dist(0, nleft + nright - 1);
int sample = dist(rng);
int pos_idx = -1; // Bigger label
int neg_idx = -1; // Smaller label
// Are we picking a sample to the left/right of the current group?
if (sample < nleft) {
// Go left
pos_idx = sample + group_begin;
neg_idx = item_idx;
} else {
pos_idx = item_idx;
uint32_t items_in_group = total_group_items - nleft - nright;
neg_idx = sample + items_in_group + group_begin;
}
// Compute and assign the gradients now
const float eps = 1e-16f;
bst_float p = common::Sigmoid(dpreds[original_pos[pos_idx]] - dpreds[original_pos[neg_idx]]);
bst_float g = p - 1.0f;
bst_float h = thrust::max(p * (1.0f - p), eps);
// Rescale each gradient and hessian so that the group has a weighted constant
float scale = __frcp_ru(niter / total_items);
if (fix_list_weight != 0.0f) {
scale *= fix_list_weight / total_group_items;
}
float weight = num_weights ? dweights[group_idx - 1] : 1.0f;
weight *= weight_normalization_factor;
weight *= wmultiplier.GetWeight(group_idx - 1, pos_idx, neg_idx);
weight *= scale;
// Accumulate gradient and hessian in both positive and negative indices
const GradientPair in_pos_gpair(g * weight, 2.0f * weight * h);
dh::AtomicAddGpair(&out_gpair[original_pos[pos_idx]], in_pos_gpair);
const GradientPair in_neg_gpair(-g * weight, 2.0f * weight * h);
dh::AtomicAddGpair(&out_gpair[original_pos[neg_idx]], in_neg_gpair);
});
// Wait until the computations done by the kernel is complete
dh::safe_cuda(cudaStreamSynchronize(nullptr));
}
};
#endif
// objective for lambda rank
template <typename LambdaWeightComputerT>
class LambdaRankObj : public ObjFunction {
public:
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.UpdateAllowUnknown(args);
}
void GetGradient(const HostDeviceVector<bst_float>& preds,
const MetaInfo& info,
int iter,
HostDeviceVector<GradientPair>* out_gpair) override {
CHECK_EQ(preds.Size(), info.labels_.Size()) << "label size predict size not match";
// quick consistency when group is not available
std::vector<unsigned> tgptr(2, 0); tgptr[1] = static_cast<unsigned>(info.labels_.Size());
const std::vector<unsigned> &gptr = info.group_ptr_.size() == 0 ? tgptr : info.group_ptr_;
CHECK(gptr.size() != 0 && gptr.back() == info.labels_.Size())
<< "group structure not consistent with #rows" << ", "
<< "group ponter size: " << gptr.size() << ", "
<< "labels size: " << info.labels_.Size() << ", "
<< "group pointer back: " << (gptr.size() == 0 ? 0 : gptr.back());
#if defined(__CUDACC__)
// Check if we have a GPU assignment; else, revert back to CPU
auto device = tparam_->gpu_id;
if (device >= 0) {
ComputeGradientsOnGPU(preds, info, iter, out_gpair, gptr);
} else {
// Revert back to CPU
#endif
ComputeGradientsOnCPU(preds, info, iter, out_gpair, gptr);
#if defined(__CUDACC__)
}
#endif
}
const char* DefaultEvalMetric() const override {
return "map";
}
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String(LambdaWeightComputerT::Name());
out["lambda_rank_param"] = ToJson(param_);
}
void LoadConfig(Json const& in) override {
FromJson(in["lambda_rank_param"], &param_);
}
private:
bst_float ComputeWeightNormalizationFactor(const MetaInfo& info,
const std::vector<unsigned> &gptr) {
const auto ngroup = static_cast<bst_omp_uint>(gptr.size() - 1);
bst_float sum_weights = 0;
for (bst_omp_uint k = 0; k < ngroup; ++k) {
sum_weights += info.GetWeight(k);
}
return ngroup / sum_weights;
}
void ComputeGradientsOnCPU(const HostDeviceVector<bst_float>& preds,
const MetaInfo& info,
int iter,
HostDeviceVector<GradientPair>* out_gpair,
const std::vector<unsigned> &gptr) {
LOG(DEBUG) << "Computing " << LambdaWeightComputerT::Name() << " gradients on CPU.";
bst_float weight_normalization_factor = ComputeWeightNormalizationFactor(info, gptr);
const auto& preds_h = preds.HostVector();
const auto& labels = info.labels_.HostVector();
std::vector<GradientPair>& gpair = out_gpair->HostVector();
const auto ngroup = static_cast<bst_omp_uint>(gptr.size() - 1);
out_gpair->Resize(preds.Size());
dmlc::OMPException exc;
#pragma omp parallel
{
exc.Run([&]() {
// parallel construct, declare random number generator here, so that each
// thread use its own random number generator, seed by thread id and current iteration
std::minstd_rand rnd((iter + 1) * 1111);
std::vector<LambdaPair> pairs;
std::vector<ListEntry> lst;
std::vector< std::pair<bst_float, unsigned> > rec;
#pragma omp for schedule(static)
for (bst_omp_uint k = 0; k < ngroup; ++k) {
exc.Run([&]() {
lst.clear(); pairs.clear();
for (unsigned j = gptr[k]; j < gptr[k+1]; ++j) {
lst.emplace_back(preds_h[j], labels[j], j);
gpair[j] = GradientPair(0.0f, 0.0f);
}
std::stable_sort(lst.begin(), lst.end(), ListEntry::CmpPred);
rec.resize(lst.size());
for (unsigned i = 0; i < lst.size(); ++i) {
rec[i] = std::make_pair(lst[i].label, i);
}
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
// enumerate buckets with same label
// for each item in the lst, grab another sample randomly
for (unsigned i = 0; i < rec.size(); ) {
unsigned j = i + 1;
while (j < rec.size() && rec[j].first == rec[i].first) ++j;
// bucket in [i,j), get a sample outside bucket
unsigned nleft = i, nright = static_cast<unsigned>(rec.size() - j);
if (nleft + nright != 0) {
int nsample = param_.num_pairsample;
while (nsample --) {
for (unsigned pid = i; pid < j; ++pid) {
unsigned ridx =
std::uniform_int_distribution<unsigned>(0, nleft + nright - 1)(rnd);
if (ridx < nleft) {
pairs.emplace_back(rec[ridx].second, rec[pid].second,
info.GetWeight(k) * weight_normalization_factor);
} else {
pairs.emplace_back(rec[pid].second, rec[ridx+j-i].second,
info.GetWeight(k) * weight_normalization_factor);
}
}
}
}
i = j;
}
// get lambda weight for the pairs
LambdaWeightComputerT::GetLambdaWeight(lst, &pairs);
// rescale each gradient and hessian so that the lst have constant weighted
float scale = 1.0f / param_.num_pairsample;
if (param_.fix_list_weight != 0.0f) {
scale *= param_.fix_list_weight / (gptr[k + 1] - gptr[k]);
}
for (auto & pair : pairs) {
const ListEntry &pos = lst[pair.pos_index];
const ListEntry &neg = lst[pair.neg_index];
const bst_float w = pair.weight * scale;
const float eps = 1e-16f;
bst_float p = common::Sigmoid(pos.pred - neg.pred);
bst_float g = p - 1.0f;
bst_float h = std::max(p * (1.0f - p), eps);
// accumulate gradient and hessian in both pid, and nid
gpair[pos.rindex] += GradientPair(g * w, 2.0f*w*h);
gpair[neg.rindex] += GradientPair(-g * w, 2.0f*w*h);
}
});
}
});
}
exc.Rethrow();
}
#if defined(__CUDACC__)
void ComputeGradientsOnGPU(const HostDeviceVector<bst_float>& preds,
const MetaInfo& info,
int iter,
HostDeviceVector<GradientPair>* out_gpair,
const std::vector<unsigned> &gptr) {
LOG(DEBUG) << "Computing " << LambdaWeightComputerT::Name() << " gradients on GPU.";
auto device = tparam_->gpu_id;
dh::safe_cuda(cudaSetDevice(device));
bst_float weight_normalization_factor = ComputeWeightNormalizationFactor(info, gptr);
// Set the device ID and copy them to the device
out_gpair->SetDevice(device);
info.labels_.SetDevice(device);
preds.SetDevice(device);
info.weights_.SetDevice(device);
out_gpair->Resize(preds.Size());
auto d_preds = preds.ConstDevicePointer();
auto d_gpair = out_gpair->DevicePointer();
auto d_labels = info.labels_.ConstDevicePointer();
SortedLabelList slist(param_);
// Sort the labels within the groups on the device
slist.Sort(info.labels_, gptr);
// Initialize the gradients next
out_gpair->Fill(GradientPair(0.0f, 0.0f));
// Finally, compute the gradients
slist.ComputeGradients<LambdaWeightComputerT>
(d_preds, d_labels, info.weights_, iter, d_gpair, weight_normalization_factor);
}
#endif
LambdaRankParam param_;
};
#if !defined(GTEST_TEST)
// register the objective functions
DMLC_REGISTER_PARAMETER(LambdaRankParam);
XGBOOST_REGISTER_OBJECTIVE(PairwiseRankObj, PairwiseLambdaWeightComputer::Name())
.describe("Pairwise rank objective.")
.set_body([]() { return new LambdaRankObj<PairwiseLambdaWeightComputer>(); });
XGBOOST_REGISTER_OBJECTIVE(LambdaRankNDCG, NDCGLambdaWeightComputer::Name())
.describe("LambdaRank with NDCG as objective.")
.set_body([]() { return new LambdaRankObj<NDCGLambdaWeightComputer>(); });
XGBOOST_REGISTER_OBJECTIVE(LambdaRankObjMAP, MAPLambdaWeightComputer::Name())
.describe("LambdaRank with MAP as objective.")
.set_body([]() { return new LambdaRankObj<MAPLambdaWeightComputer>(); });
#endif
} // namespace obj
} // namespace xgboost