412 lines
13 KiB
C++
412 lines
13 KiB
C++
/*!
|
|
* Copyright 2016-2019 XGBoost contributors
|
|
*/
|
|
#ifndef XGBOOST_TESTS_CPP_HELPERS_H_
|
|
#define XGBOOST_TESTS_CPP_HELPERS_H_
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <cstdio>
|
|
#include <string>
|
|
#include <memory>
|
|
#include <vector>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <dmlc/filesystem.h>
|
|
#include <xgboost/base.h>
|
|
#include <xgboost/json.h>
|
|
#include <xgboost/generic_parameters.h>
|
|
|
|
#include "../../src/common/common.h"
|
|
#include "../../src/gbm/gbtree_model.h"
|
|
#include "../../src/data/array_interface.h"
|
|
|
|
#if defined(__CUDACC__)
|
|
#define DeclareUnifiedTest(name) GPU ## name
|
|
#else
|
|
#define DeclareUnifiedTest(name) name
|
|
#endif
|
|
|
|
#if defined(__CUDACC__)
|
|
#define GPUIDX 0
|
|
#else
|
|
#define GPUIDX -1
|
|
#endif
|
|
|
|
namespace xgboost {
|
|
class ObjFunction;
|
|
class Metric;
|
|
struct LearnerModelParam;
|
|
class GradientBooster;
|
|
}
|
|
|
|
template <typename Float>
|
|
Float RelError(Float l, Float r) {
|
|
static_assert(std::is_floating_point<Float>::value, "");
|
|
return std::abs(1.0f - l / r);
|
|
}
|
|
|
|
bool FileExists(const std::string& filename);
|
|
|
|
int64_t GetFileSize(const std::string& filename);
|
|
|
|
void CreateSimpleTestData(const std::string& filename);
|
|
|
|
void CreateBigTestData(const std::string& filename, size_t n_entries);
|
|
|
|
void CheckObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
|
|
std::vector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights,
|
|
std::vector<xgboost::bst_float> out_grad,
|
|
std::vector<xgboost::bst_float> out_hess);
|
|
|
|
xgboost::Json CheckConfigReloadImpl(xgboost::Configurable* const configurable,
|
|
std::string name);
|
|
|
|
template <typename T>
|
|
xgboost::Json CheckConfigReload(std::unique_ptr<T> const& configurable,
|
|
std::string name = "") {
|
|
return CheckConfigReloadImpl(dynamic_cast<xgboost::Configurable*>(configurable.get()),
|
|
name);
|
|
}
|
|
|
|
void CheckRankingObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
|
|
std::vector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights,
|
|
std::vector<xgboost::bst_uint> groups,
|
|
std::vector<xgboost::bst_float> out_grad,
|
|
std::vector<xgboost::bst_float> out_hess);
|
|
|
|
xgboost::bst_float GetMetricEval(
|
|
xgboost::Metric * metric,
|
|
xgboost::HostDeviceVector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights = std::vector<xgboost::bst_float>(),
|
|
std::vector<xgboost::bst_uint> groups = std::vector<xgboost::bst_uint>());
|
|
|
|
namespace xgboost {
|
|
bool IsNear(std::vector<xgboost::bst_float>::const_iterator _beg1,
|
|
std::vector<xgboost::bst_float>::const_iterator _end1,
|
|
std::vector<xgboost::bst_float>::const_iterator _beg2);
|
|
|
|
/*!
|
|
* \brief Linear congruential generator.
|
|
*
|
|
* The distribution defined in std is not portable. Given the same seed, it
|
|
* migth produce different outputs on different platforms or with different
|
|
* compilers. The SimpleLCG implemented here is to make sure all tests are
|
|
* reproducible.
|
|
*/
|
|
class SimpleLCG {
|
|
private:
|
|
using StateType = int64_t;
|
|
static StateType constexpr kDefaultInit = 3;
|
|
static StateType constexpr default_alpha_ = 61;
|
|
static StateType constexpr max_value_ = ((StateType)1 << 32) - 1;
|
|
|
|
StateType state_;
|
|
StateType const alpha_;
|
|
StateType const mod_;
|
|
|
|
StateType seed_;
|
|
|
|
public:
|
|
SimpleLCG() : state_{kDefaultInit},
|
|
alpha_{default_alpha_}, mod_{max_value_}, seed_{state_}{}
|
|
SimpleLCG(SimpleLCG const& that) = default;
|
|
SimpleLCG(SimpleLCG&& that) = default;
|
|
|
|
void Seed(StateType seed) {
|
|
seed_ = seed;
|
|
}
|
|
/*!
|
|
* \brief Initialize SimpleLCG.
|
|
*
|
|
* \param state Initial state, can also be considered as seed. If set to
|
|
* zero, SimpleLCG will use internal default value.
|
|
* \param alpha multiplier
|
|
* \param mod modulo
|
|
*/
|
|
explicit SimpleLCG(StateType state,
|
|
StateType alpha=default_alpha_, StateType mod=max_value_)
|
|
: state_{state == 0 ? kDefaultInit : state},
|
|
alpha_{alpha}, mod_{mod} , seed_{state} {}
|
|
|
|
StateType operator()();
|
|
StateType Min() const;
|
|
StateType Max() const;
|
|
};
|
|
|
|
template <typename ResultT>
|
|
class SimpleRealUniformDistribution {
|
|
private:
|
|
ResultT const lower_;
|
|
ResultT const upper_;
|
|
|
|
/*! \brief Over-simplified version of std::generate_canonical. */
|
|
template <size_t Bits, typename GeneratorT>
|
|
ResultT GenerateCanonical(GeneratorT* rng) const {
|
|
static_assert(std::is_floating_point<ResultT>::value,
|
|
"Result type must be floating point.");
|
|
long double const r = (static_cast<long double>(rng->Max())
|
|
- static_cast<long double>(rng->Min())) + 1.0L;
|
|
auto const log2r = static_cast<size_t>(std::log(r) / std::log(2.0L));
|
|
size_t m = std::max<size_t>(1UL, (Bits + log2r - 1UL) / log2r);
|
|
ResultT sum_value = 0, r_k = 1;
|
|
|
|
for (size_t k = m; k != 0; --k) {
|
|
sum_value += ResultT((*rng)() - rng->Min()) * r_k;
|
|
r_k *= r;
|
|
}
|
|
|
|
ResultT res = sum_value / r_k;
|
|
return res;
|
|
}
|
|
|
|
public:
|
|
SimpleRealUniformDistribution(ResultT l, ResultT u) :
|
|
lower_{l}, upper_{u} {}
|
|
|
|
template <typename GeneratorT>
|
|
ResultT operator()(GeneratorT* rng) const {
|
|
ResultT tmp = GenerateCanonical<std::numeric_limits<ResultT>::digits,
|
|
GeneratorT>(rng);
|
|
auto ret = (tmp * (upper_ - lower_)) + lower_;
|
|
// Correct floating point error.
|
|
return std::max(ret, lower_);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
Json GetArrayInterface(HostDeviceVector<T> *storage, size_t rows, size_t cols) {
|
|
Json array_interface{Object()};
|
|
array_interface["data"] = std::vector<Json>(2);
|
|
if (storage->DeviceCanRead()) {
|
|
array_interface["data"][0] =
|
|
Integer(reinterpret_cast<int64_t>(storage->ConstDevicePointer()));
|
|
} else {
|
|
array_interface["data"][0] =
|
|
Integer(reinterpret_cast<int64_t>(storage->ConstHostPointer()));
|
|
}
|
|
array_interface["data"][1] = Boolean(false);
|
|
|
|
array_interface["shape"] = std::vector<Json>(2);
|
|
array_interface["shape"][0] = rows;
|
|
array_interface["shape"][1] = cols;
|
|
|
|
char t = ArrayInterfaceHandler::TypeChar<T>();
|
|
array_interface["typestr"] = String(std::string{"<"} + t + std::to_string(sizeof(T)));
|
|
array_interface["version"] = 1;
|
|
return array_interface;
|
|
}
|
|
|
|
// Generate in-memory random data without using DMatrix.
|
|
class RandomDataGenerator {
|
|
bst_row_t rows_;
|
|
size_t cols_;
|
|
float sparsity_;
|
|
|
|
float lower_;
|
|
float upper_;
|
|
|
|
int32_t device_;
|
|
int32_t seed_;
|
|
SimpleLCG lcg_;
|
|
|
|
size_t bins_;
|
|
|
|
Json ArrayInterfaceImpl(HostDeviceVector<float> *storage, size_t rows,
|
|
size_t cols) const;
|
|
|
|
public:
|
|
RandomDataGenerator(bst_row_t rows, size_t cols, float sparsity)
|
|
: rows_{rows}, cols_{cols}, sparsity_{sparsity}, lower_{0.0f}, upper_{1.0f},
|
|
device_{-1}, seed_{0}, lcg_{seed_}, bins_{0} {}
|
|
|
|
RandomDataGenerator &Lower(float v) {
|
|
lower_ = v;
|
|
return *this;
|
|
}
|
|
RandomDataGenerator& Upper(float v) {
|
|
upper_ = v;
|
|
return *this;
|
|
}
|
|
RandomDataGenerator& Device(int32_t d) {
|
|
device_ = d;
|
|
return *this;
|
|
}
|
|
RandomDataGenerator& Seed(int32_t s) {
|
|
seed_ = s;
|
|
lcg_.Seed(seed_);
|
|
return *this;
|
|
}
|
|
RandomDataGenerator& Bins(size_t b) {
|
|
bins_ = b;
|
|
return *this;
|
|
}
|
|
|
|
void GenerateDense(HostDeviceVector<float>* out) const;
|
|
|
|
std::string GenerateArrayInterface(HostDeviceVector<float>* storage) const;
|
|
|
|
/*!
|
|
* \brief Generate batches of array interface stored in consecutive memory.
|
|
*
|
|
* \param storage The consecutive momory used to store the arrays.
|
|
* \param batches Number of batches.
|
|
*
|
|
* \return A vector storing JSON string representation of interface for each batch, and
|
|
* a single JSON string representing the consecutive memory as a whole
|
|
* (combining all the batches).
|
|
*/
|
|
std::pair<std::vector<std::string>, std::string>
|
|
GenerateArrayInterfaceBatch(HostDeviceVector<float> *storage,
|
|
size_t batches) const;
|
|
|
|
std::string GenerateColumnarArrayInterface(
|
|
std::vector<HostDeviceVector<float>> *data) const;
|
|
|
|
void GenerateCSR(HostDeviceVector<float>* value, HostDeviceVector<bst_row_t>* row_ptr,
|
|
HostDeviceVector<bst_feature_t>* columns) const;
|
|
|
|
std::shared_ptr<DMatrix> GenerateDMatrix(bool with_label = false,
|
|
bool float_label = true,
|
|
size_t classes = 1) const;
|
|
#if defined(XGBOOST_USE_CUDA)
|
|
std::shared_ptr<DMatrix> GenerateDeviceDMatrix(bool with_label = false,
|
|
bool float_label = true,
|
|
size_t classes = 1);
|
|
#endif
|
|
};
|
|
|
|
inline std::vector<float>
|
|
GenerateRandomCategoricalSingleColumn(int n, size_t num_categories) {
|
|
std::vector<float> x(n);
|
|
std::mt19937 rng(0);
|
|
std::uniform_int_distribution<size_t> dist(0, num_categories - 1);
|
|
std::generate(x.begin(), x.end(), [&]() { return dist(rng); });
|
|
// Make sure each category is present
|
|
for(size_t i = 0; i < num_categories; i++) {
|
|
x[i] = i;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
std::shared_ptr<DMatrix> GetDMatrixFromData(const std::vector<float> &x,
|
|
int num_rows, int num_columns);
|
|
|
|
std::unique_ptr<DMatrix> CreateSparsePageDMatrix(
|
|
size_t n_entries, size_t page_size, std::string tmp_file);
|
|
|
|
/**
|
|
* \fn std::unique_ptr<DMatrix> CreateSparsePageDMatrixWithRC(size_t n_rows, size_t n_cols,
|
|
* size_t page_size);
|
|
*
|
|
* \brief Creates dmatrix with some records, each record containing random number of
|
|
* features in [1, n_cols]
|
|
*
|
|
* \param n_rows Number of records to create.
|
|
* \param n_cols Max number of features within that record.
|
|
* \param page_size Sparse page size for the pages within the dmatrix. If page size is 0
|
|
* then the entire dmatrix is resident in memory; else, multiple sparse pages
|
|
* of page size are created and backed to disk, which would have to be
|
|
* streamed in at point of use.
|
|
* \param deterministic The content inside the dmatrix is constant for this configuration, if true;
|
|
* else, the content changes every time this method is invoked
|
|
*
|
|
* \return The new dmatrix.
|
|
*/
|
|
std::unique_ptr<DMatrix> CreateSparsePageDMatrixWithRC(
|
|
size_t n_rows, size_t n_cols, size_t page_size, bool deterministic,
|
|
const dmlc::TemporaryDirectory& tempdir = dmlc::TemporaryDirectory());
|
|
|
|
gbm::GBTreeModel CreateTestModel(LearnerModelParam const* param, size_t n_classes = 1);
|
|
|
|
std::unique_ptr<GradientBooster> CreateTrainedGBM(
|
|
std::string name, Args kwargs, size_t kRows, size_t kCols,
|
|
LearnerModelParam const* learner_model_param,
|
|
GenericParameter const* generic_param);
|
|
|
|
inline GenericParameter CreateEmptyGenericParam(int gpu_id) {
|
|
xgboost::GenericParameter tparam;
|
|
std::vector<std::pair<std::string, std::string>> args {
|
|
{"gpu_id", std::to_string(gpu_id)}};
|
|
tparam.Init(args);
|
|
return tparam;
|
|
}
|
|
|
|
inline HostDeviceVector<GradientPair> GenerateRandomGradients(const size_t n_rows,
|
|
float lower= 0.0f, float upper = 1.0f) {
|
|
xgboost::SimpleLCG gen;
|
|
xgboost::SimpleRealUniformDistribution<bst_float> dist(lower, upper);
|
|
std::vector<GradientPair> h_gpair(n_rows);
|
|
for (auto &gpair : h_gpair) {
|
|
bst_float grad = dist(&gen);
|
|
bst_float hess = dist(&gen);
|
|
gpair = GradientPair(grad, hess);
|
|
}
|
|
HostDeviceVector<GradientPair> gpair(h_gpair);
|
|
return gpair;
|
|
}
|
|
|
|
typedef void *DMatrixHandle; // NOLINT(*);
|
|
|
|
class CudaArrayIterForTest {
|
|
HostDeviceVector<float> data_;
|
|
size_t iter_ {0};
|
|
DMatrixHandle proxy_;
|
|
std::unique_ptr<RandomDataGenerator> rng_;
|
|
|
|
std::vector<std::string> batches_;
|
|
std::string interface_;
|
|
size_t rows_;
|
|
size_t cols_;
|
|
size_t n_batches_;
|
|
|
|
public:
|
|
size_t static constexpr kRows { 1000 };
|
|
size_t static constexpr kBatches { 100 };
|
|
size_t static constexpr kCols { 13 };
|
|
|
|
explicit CudaArrayIterForTest(float sparsity, size_t rows = kRows,
|
|
size_t cols = kCols, size_t batches = kBatches);
|
|
~CudaArrayIterForTest();
|
|
|
|
std::string AsArray() const {
|
|
return interface_;
|
|
}
|
|
|
|
int Next();
|
|
void Reset() {
|
|
iter_ = 0;
|
|
}
|
|
size_t Iter() const { return iter_; }
|
|
auto Proxy() -> decltype(proxy_) { return proxy_; }
|
|
};
|
|
|
|
void DMatrixToCSR(DMatrix *dmat, std::vector<float> *p_data,
|
|
std::vector<size_t> *p_row_ptr,
|
|
std::vector<bst_feature_t> *p_cids);
|
|
|
|
typedef void *DataIterHandle; // NOLINT(*)
|
|
|
|
inline void Reset(DataIterHandle self) {
|
|
static_cast<CudaArrayIterForTest*>(self)->Reset();
|
|
}
|
|
|
|
inline int Next(DataIterHandle self) {
|
|
return static_cast<CudaArrayIterForTest*>(self)->Next();
|
|
}
|
|
|
|
class RMMAllocator;
|
|
using RMMAllocatorPtr = std::unique_ptr<RMMAllocator, void(*)(RMMAllocator*)>;
|
|
RMMAllocatorPtr SetUpRMMResourceForCppTests(int argc, char** argv);
|
|
|
|
} // namespace xgboost
|
|
#endif
|