* Add a new API function for predicting on `DMatrix`. This function aligns with rest of the `XGBoosterPredictFrom*` functions on semantic of function arguments. * Purge `ntree_limit` from libxgboost, use iteration instead. * [dask] Use `inplace_predict` by default for dask sklearn models. * [dask] Run prediction shape inference on worker instead of client. The breaking change is in the Python sklearn `apply` function, I made it to be consistent with other prediction functions where `best_iteration` is used by default.
41 lines
506 B
YAML
41 lines
506 B
YAML
name: cpu_test
|
|
channels:
|
|
- conda-forge
|
|
dependencies:
|
|
- python=3.7
|
|
- pip
|
|
- wheel
|
|
- pyyaml
|
|
- cpplint
|
|
- pylint
|
|
- numpy
|
|
- scipy
|
|
- scikit-learn
|
|
- pandas
|
|
- matplotlib
|
|
- dask
|
|
- distributed
|
|
- python-graphviz
|
|
- hypothesis
|
|
- astroid
|
|
- sphinx
|
|
- sh
|
|
- recommonmark
|
|
- mock
|
|
- breathe
|
|
- pytest
|
|
- pytest-cov
|
|
- python-kubernetes
|
|
- urllib3
|
|
- jsonschema
|
|
- boto3
|
|
- awscli
|
|
- numba
|
|
- llvmlite
|
|
- pip:
|
|
- shap
|
|
- ipython # required by shap at import time.
|
|
- guzzle_sphinx_theme
|
|
- datatable
|
|
- modin[all]
|