A new parameter `custom_metric` is added to `train` and `cv` to distinguish the behaviour from the old `feval`. And `feval` is deprecated. The new `custom_metric` receives transformed prediction when the built-in objective is used. This enables XGBoost to use cost functions from other libraries like scikit-learn directly without going through the definition of the link function. `eval_metric` and `early_stopping_rounds` in sklearn interface are moved from `fit` to `__init__` and is now saved as part of the scikit-learn model. The old ones in `fit` function are now deprecated. The new `eval_metric` in `__init__` has the same new behaviour as `custom_metric`. Added more detailed documents for the behaviour of custom objective and metric.
198 lines
6.2 KiB
Python
198 lines
6.2 KiB
Python
'''Demo for defining customized metric and objective. Notice that for
|
|
simplicity reason weight is not used in following example. In this
|
|
script, we implement the Squared Log Error (SLE) objective and RMSLE metric as customized
|
|
functions, then compare it with native implementation in XGBoost.
|
|
|
|
See doc/tutorials/custom_metric_obj.rst for a step by step
|
|
walkthrough, with other details.
|
|
|
|
The `SLE` objective reduces impact of outliers in training dataset,
|
|
hence here we also compare its performance with standard squared
|
|
error.
|
|
|
|
'''
|
|
import numpy as np
|
|
import xgboost as xgb
|
|
from typing import Tuple, Dict, List
|
|
from time import time
|
|
import argparse
|
|
import matplotlib
|
|
from matplotlib import pyplot as plt
|
|
|
|
# shape of generated data.
|
|
kRows = 4096
|
|
kCols = 16
|
|
|
|
kOutlier = 10000 # mean of generated outliers
|
|
kNumberOfOutliers = 64
|
|
|
|
kRatio = 0.7
|
|
kSeed = 1994
|
|
|
|
kBoostRound = 20
|
|
|
|
np.random.seed(seed=kSeed)
|
|
|
|
|
|
def generate_data() -> Tuple[xgb.DMatrix, xgb.DMatrix]:
|
|
'''Generate data containing outliers.'''
|
|
x = np.random.randn(kRows, kCols)
|
|
y = np.random.randn(kRows)
|
|
y += np.abs(np.min(y))
|
|
|
|
# Create outliers
|
|
for i in range(0, kNumberOfOutliers):
|
|
ind = np.random.randint(0, len(y)-1)
|
|
y[ind] += np.random.randint(0, kOutlier)
|
|
|
|
train_portion = int(kRows * kRatio)
|
|
|
|
# rmsle requires all label be greater than -1.
|
|
assert np.all(y > -1.0)
|
|
|
|
train_x: np.ndarray = x[: train_portion]
|
|
train_y: np.ndarray = y[: train_portion]
|
|
dtrain = xgb.DMatrix(train_x, label=train_y)
|
|
|
|
test_x = x[train_portion:]
|
|
test_y = y[train_portion:]
|
|
dtest = xgb.DMatrix(test_x, label=test_y)
|
|
return dtrain, dtest
|
|
|
|
|
|
def native_rmse(dtrain: xgb.DMatrix,
|
|
dtest: xgb.DMatrix) -> Dict[str, Dict[str, List[float]]]:
|
|
'''Train using native implementation of Root Mean Squared Loss.'''
|
|
print('Squared Error')
|
|
squared_error = {
|
|
'objective': 'reg:squarederror',
|
|
'eval_metric': 'rmse',
|
|
'tree_method': 'hist',
|
|
'seed': kSeed
|
|
}
|
|
start = time()
|
|
results: Dict[str, Dict[str, List[float]]] = {}
|
|
xgb.train(squared_error,
|
|
dtrain=dtrain,
|
|
num_boost_round=kBoostRound,
|
|
evals=[(dtrain, 'dtrain'), (dtest, 'dtest')],
|
|
evals_result=results)
|
|
print('Finished Squared Error in:', time() - start, '\n')
|
|
return results
|
|
|
|
|
|
def native_rmsle(dtrain: xgb.DMatrix,
|
|
dtest: xgb.DMatrix) -> Dict[str, Dict[str, List[float]]]:
|
|
'''Train using native implementation of Squared Log Error.'''
|
|
print('Squared Log Error')
|
|
results: Dict[str, Dict[str, List[float]]] = {}
|
|
squared_log_error = {
|
|
'objective': 'reg:squaredlogerror',
|
|
'eval_metric': 'rmsle',
|
|
'tree_method': 'hist',
|
|
'seed': kSeed
|
|
}
|
|
start = time()
|
|
xgb.train(squared_log_error,
|
|
dtrain=dtrain,
|
|
num_boost_round=kBoostRound,
|
|
evals=[(dtrain, 'dtrain'), (dtest, 'dtest')],
|
|
evals_result=results)
|
|
print('Finished Squared Log Error in:', time() - start)
|
|
return results
|
|
|
|
|
|
def py_rmsle(dtrain: xgb.DMatrix, dtest: xgb.DMatrix) -> Dict:
|
|
'''Train using Python implementation of Squared Log Error.'''
|
|
def gradient(predt: np.ndarray, dtrain: xgb.DMatrix) -> np.ndarray:
|
|
'''Compute the gradient squared log error.'''
|
|
y = dtrain.get_label()
|
|
return (np.log1p(predt) - np.log1p(y)) / (predt + 1)
|
|
|
|
def hessian(predt: np.ndarray, dtrain: xgb.DMatrix) -> np.ndarray:
|
|
'''Compute the hessian for squared log error.'''
|
|
y = dtrain.get_label()
|
|
return ((-np.log1p(predt) + np.log1p(y) + 1) /
|
|
np.power(predt + 1, 2))
|
|
|
|
def squared_log(predt: np.ndarray,
|
|
dtrain: xgb.DMatrix) -> Tuple[np.ndarray, np.ndarray]:
|
|
'''Squared Log Error objective. A simplified version for RMSLE used as
|
|
objective function.
|
|
|
|
:math:`\frac{1}{2}[log(pred + 1) - log(label + 1)]^2`
|
|
|
|
'''
|
|
predt[predt < -1] = -1 + 1e-6
|
|
grad = gradient(predt, dtrain)
|
|
hess = hessian(predt, dtrain)
|
|
return grad, hess
|
|
|
|
def rmsle(predt: np.ndarray, dtrain: xgb.DMatrix) -> Tuple[str, float]:
|
|
''' Root mean squared log error metric.
|
|
|
|
:math:`\sqrt{\frac{1}{N}[log(pred + 1) - log(label + 1)]^2}`
|
|
'''
|
|
y = dtrain.get_label()
|
|
predt[predt < -1] = -1 + 1e-6
|
|
elements = np.power(np.log1p(y) - np.log1p(predt), 2)
|
|
return 'PyRMSLE', float(np.sqrt(np.sum(elements) / len(y)))
|
|
|
|
results: Dict[str, Dict[str, List[float]]] = {}
|
|
xgb.train({'tree_method': 'hist', 'seed': kSeed,
|
|
'disable_default_eval_metric': 1},
|
|
dtrain=dtrain,
|
|
num_boost_round=kBoostRound,
|
|
obj=squared_log,
|
|
custom_metric=rmsle,
|
|
evals=[(dtrain, 'dtrain'), (dtest, 'dtest')],
|
|
evals_result=results)
|
|
|
|
return results
|
|
|
|
|
|
def plot_history(rmse_evals, rmsle_evals, py_rmsle_evals):
|
|
fig, axs = plt.subplots(3, 1)
|
|
ax0: matplotlib.axes.Axes = axs[0]
|
|
ax1: matplotlib.axes.Axes = axs[1]
|
|
ax2: matplotlib.axes.Axes = axs[2]
|
|
|
|
x = np.arange(0, kBoostRound, 1)
|
|
|
|
ax0.plot(x, rmse_evals['dtrain']['rmse'], label='train-RMSE')
|
|
ax0.plot(x, rmse_evals['dtest']['rmse'], label='test-RMSE')
|
|
ax0.legend()
|
|
|
|
ax1.plot(x, rmsle_evals['dtrain']['rmsle'], label='train-native-RMSLE')
|
|
ax1.plot(x, rmsle_evals['dtest']['rmsle'], label='test-native-RMSLE')
|
|
ax1.legend()
|
|
|
|
ax2.plot(x, py_rmsle_evals['dtrain']['PyRMSLE'], label='train-PyRMSLE')
|
|
ax2.plot(x, py_rmsle_evals['dtest']['PyRMSLE'], label='test-PyRMSLE')
|
|
ax2.legend()
|
|
|
|
plt.show()
|
|
plt.close()
|
|
|
|
|
|
def main(args):
|
|
dtrain, dtest = generate_data()
|
|
rmse_evals = native_rmse(dtrain, dtest)
|
|
rmsle_evals = native_rmsle(dtrain, dtest)
|
|
py_rmsle_evals = py_rmsle(dtrain, dtest)
|
|
|
|
if args.plot != 0:
|
|
plot_history(rmse_evals, rmsle_evals, py_rmsle_evals)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(
|
|
description='Arguments for custom RMSLE objective function demo.')
|
|
parser.add_argument(
|
|
'--plot',
|
|
type=int,
|
|
default=1,
|
|
help='Set to 0 to disable plotting the evaluation history.')
|
|
args = parser.parse_args()
|
|
main(args)
|