This PR replaces the original RABIT implementation with a new one, which has already been partially merged into XGBoost. The new one features: - Federated learning for both CPU and GPU. - NCCL. - More data types. - A unified interface for all the underlying implementations. - Improved timeout handling for both tracker and workers. - Exhausted tests with metrics (fixed a couple of bugs along the way). - A reusable tracker for Python and JVM packages.
52 lines
1.3 KiB
C++
52 lines
1.3 KiB
C++
/*!
|
|
* Copyright 2023 XGBoost contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/data.h>
|
|
|
|
#include <thread>
|
|
|
|
#include "../../../src/collective/communicator-inl.h"
|
|
#include "../filesystem.h"
|
|
#include "../helpers.h"
|
|
#include "federated/test_worker.h"
|
|
|
|
namespace xgboost {
|
|
|
|
void VerifyLoadUri() {
|
|
auto const rank = collective::GetRank();
|
|
|
|
size_t constexpr kRows{16};
|
|
size_t const kCols = 8 + rank;
|
|
|
|
dmlc::TemporaryDirectory tmpdir;
|
|
std::string path = tmpdir.path + "/small" + std::to_string(rank) + ".csv";
|
|
CreateTestCSV(path, kRows, kCols);
|
|
|
|
std::unique_ptr<DMatrix> dmat;
|
|
std::string uri = path + "?format=csv";
|
|
dmat.reset(DMatrix::Load(uri, false, DataSplitMode::kCol));
|
|
|
|
ASSERT_EQ(dmat->Info().num_col_, 8 * collective::GetWorldSize() + 1);
|
|
ASSERT_EQ(dmat->Info().num_row_, kRows);
|
|
|
|
for (auto const& page : dmat->GetBatches<SparsePage>()) {
|
|
auto entries = page.GetView().data;
|
|
auto index = 0;
|
|
int offsets[] = {0, 8, 17};
|
|
int offset = offsets[rank];
|
|
for (std::size_t row = 0; row < kRows; row++) {
|
|
for (std::size_t col = 0; col < kCols; col++) {
|
|
EXPECT_EQ(entries[index].index, col + offset);
|
|
index++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(FederatedDataTest, LoadUri) {
|
|
static int constexpr kWorldSize{2};
|
|
collective::TestFederatedGlobal(kWorldSize, [] { VerifyLoadUri(); });
|
|
}
|
|
} // namespace xgboost
|