xgboost/tests/cpp/c_api/test_c_api.cc
2024-02-01 14:41:48 -08:00

630 lines
21 KiB
C++

/**
* Copyright 2019-2024 XGBoost contributors
*/
#include <gtest/gtest.h>
#include <xgboost/c_api.h>
#include <xgboost/data.h>
#include <xgboost/json.h> // Json
#include <xgboost/learner.h>
#include <xgboost/version_config.h>
#include <array> // for array
#include <cstddef> // std::size_t
#include <filesystem> // std::filesystem
#include <limits> // std::numeric_limits
#include <string> // std::string
#include <vector>
#include "../../../src/c_api/c_api_error.h"
#include "../../../src/common/io.h"
#include "../../../src/data/adapter.h" // for ArrayAdapter
#include "../../../src/data/array_interface.h" // for ArrayInterface
#include "../../../src/data/gradient_index.h" // for GHistIndexMatrix
#include "../../../src/data/iterative_dmatrix.h" // for IterativeDMatrix
#include "../../../src/data/sparse_page_dmatrix.h" // for SparsePageDMatrix
#include "../helpers.h"
TEST(CAPI, XGDMatrixCreateFromMatDT) {
std::vector<int> col0 = {0, -1, 3};
std::vector<float> col1 = {-4.0f, 2.0f, 0.0f};
const char *col0_type = "int32";
const char *col1_type = "float32";
std::vector<void *> data = {col0.data(), col1.data()};
std::vector<const char *> types = {col0_type, col1_type};
DMatrixHandle handle;
XGDMatrixCreateFromDT(data.data(), types.data(), 3, 2, &handle,
0);
std::shared_ptr<xgboost::DMatrix> *dmat =
static_cast<std::shared_ptr<xgboost::DMatrix> *>(handle);
xgboost::MetaInfo &info = (*dmat)->Info();
ASSERT_EQ(info.num_col_, 2ul);
ASSERT_EQ(info.num_row_, 3ul);
ASSERT_EQ(info.num_nonzero_, 6ul);
for (const auto &batch : (*dmat)->GetBatches<xgboost::SparsePage>()) {
auto page = batch.GetView();
ASSERT_EQ(page[0][0].fvalue, 0.0f);
ASSERT_EQ(page[0][1].fvalue, -4.0f);
ASSERT_EQ(page[2][0].fvalue, 3.0f);
ASSERT_EQ(page[2][1].fvalue, 0.0f);
}
delete dmat;
}
TEST(CAPI, XGDMatrixCreateFromMatOmp) {
std::vector<bst_ulong> num_rows = {100, 11374, 15000};
for (auto row : num_rows) {
bst_ulong num_cols = 50;
int num_missing = 5;
DMatrixHandle handle;
std::vector<float> data(num_cols * row, 1.5);
for (int i = 0; i < num_missing; i++) {
data[i] = std::numeric_limits<float>::quiet_NaN();
}
XGDMatrixCreateFromMat_omp(data.data(), row, num_cols,
std::numeric_limits<float>::quiet_NaN(), &handle,
0);
std::shared_ptr<xgboost::DMatrix> *dmat =
static_cast<std::shared_ptr<xgboost::DMatrix> *>(handle);
xgboost::MetaInfo &info = (*dmat)->Info();
ASSERT_EQ(info.num_col_, num_cols);
ASSERT_EQ(info.num_row_, row);
ASSERT_EQ(info.num_nonzero_, num_cols * row - num_missing);
for (const auto &batch : (*dmat)->GetBatches<xgboost::SparsePage>()) {
auto page = batch.GetView();
for (size_t i = 0; i < batch.Size(); i++) {
auto inst = page[i];
for (auto e : inst) {
ASSERT_EQ(e.fvalue, 1.5);
}
}
}
delete dmat;
}
}
namespace xgboost {
TEST(CAPI, Version) {
int patch {0};
XGBoostVersion(NULL, NULL, &patch); // NOLINT
ASSERT_EQ(patch, XGBOOST_VER_PATCH);
}
TEST(CAPI, XGDMatrixCreateFromCSR) {
HostDeviceVector<std::size_t> indptr{0, 3};
HostDeviceVector<double> data{0.0, 1.0, 2.0};
HostDeviceVector<std::size_t> indices{0, 1, 2};
auto indptr_arr = GetArrayInterface(&indptr, 2, 1);
auto indices_arr = GetArrayInterface(&indices, 3, 1);
auto data_arr = GetArrayInterface(&data, 3, 1);
std::string sindptr, sindices, sdata, sconfig;
Json::Dump(indptr_arr, &sindptr);
Json::Dump(indices_arr, &sindices);
Json::Dump(data_arr, &sdata);
Json config{Object{}};
config["missing"] = Number{std::numeric_limits<float>::quiet_NaN()};
config["data_split_mode"] = Integer{static_cast<int64_t>(DataSplitMode::kCol)};
Json::Dump(config, &sconfig);
DMatrixHandle handle;
XGDMatrixCreateFromCSR(sindptr.c_str(), sindices.c_str(), sdata.c_str(), 3, sconfig.c_str(),
&handle);
bst_ulong n;
ASSERT_EQ(XGDMatrixNumRow(handle, &n), 0);
ASSERT_EQ(n, 1);
ASSERT_EQ(XGDMatrixNumCol(handle, &n), 0);
ASSERT_EQ(n, 3);
ASSERT_EQ(XGDMatrixNumNonMissing(handle, &n), 0);
ASSERT_EQ(n, 3);
ASSERT_EQ(XGDMatrixDataSplitMode(handle, &n), 0);
ASSERT_EQ(n, static_cast<int64_t>(DataSplitMode::kCol));
std::shared_ptr<xgboost::DMatrix> *pp_fmat =
static_cast<std::shared_ptr<xgboost::DMatrix> *>(handle);
ASSERT_EQ((*pp_fmat)->Ctx()->Threads(), AllThreadsForTest());
XGDMatrixFree(handle);
}
TEST(CAPI, ConfigIO) {
size_t constexpr kRows = 10;
auto p_dmat = RandomDataGenerator(kRows, 10, 0).GenerateDMatrix();
std::vector<std::shared_ptr<DMatrix>> mat {p_dmat};
std::vector<bst_float> labels(kRows);
for (size_t i = 0; i < labels.size(); ++i) {
labels[i] = i;
}
p_dmat->Info().labels.Data()->HostVector() = labels;
p_dmat->Info().labels.Reshape(kRows);
std::shared_ptr<Learner> learner { Learner::Create(mat) };
BoosterHandle handle = learner.get();
learner->UpdateOneIter(0, p_dmat);
std::array<char const* , 1> out;
bst_ulong len {0};
XGBoosterSaveJsonConfig(handle, &len, out.data());
std::string config_str_0 { out[0] };
auto config_0 = Json::Load({config_str_0.c_str(), config_str_0.size()});
XGBoosterLoadJsonConfig(handle, out[0]);
bst_ulong len_1 {0};
std::string config_str_1 { out[0] };
XGBoosterSaveJsonConfig(handle, &len_1, out.data());
auto config_1 = Json::Load({config_str_1.c_str(), config_str_1.size()});
ASSERT_EQ(config_0, config_1);
}
TEST(CAPI, JsonModelIO) {
size_t constexpr kRows = 10;
size_t constexpr kCols = 10;
auto tempdir = std::filesystem::temp_directory_path();
auto p_dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
std::vector<std::shared_ptr<DMatrix>> mat {p_dmat};
std::vector<bst_float> labels(kRows);
for (size_t i = 0; i < labels.size(); ++i) {
labels[i] = i;
}
p_dmat->Info().labels.Data()->HostVector() = labels;
p_dmat->Info().labels.Reshape(kRows);
std::shared_ptr<Learner> learner { Learner::Create(mat) };
learner->UpdateOneIter(0, p_dmat);
BoosterHandle handle = learner.get();
auto modelfile_0 = tempdir / std::filesystem::u8path(u8"모델_0.json");
XGBoosterSaveModel(handle, modelfile_0.u8string().c_str());
XGBoosterLoadModel(handle, modelfile_0.u8string().c_str());
bst_ulong num_feature {0};
ASSERT_EQ(XGBoosterGetNumFeature(handle, &num_feature), 0);
ASSERT_EQ(num_feature, kCols);
auto modelfile_1 = tempdir / "model_1.json";
XGBoosterSaveModel(handle, modelfile_1.u8string().c_str());
auto model_str_0 = common::LoadSequentialFile(modelfile_0.u8string());
auto model_str_1 = common::LoadSequentialFile(modelfile_1.u8string());
ASSERT_EQ(model_str_0.front(), '{');
ASSERT_EQ(model_str_0, model_str_1);
/**
* In memory
*/
bst_ulong len{0};
char const *data;
XGBoosterSaveModelToBuffer(handle, R"({"format": "ubj"})", &len, &data);
ASSERT_GT(len, 3);
XGBoosterLoadModelFromBuffer(handle, data, len);
char const *saved;
bst_ulong saved_len{0};
XGBoosterSaveModelToBuffer(handle, R"({"format": "ubj"})", &saved_len, &saved);
ASSERT_EQ(len, saved_len);
auto l = StringView{data, static_cast<size_t>(len)};
auto r = StringView{saved, static_cast<size_t>(saved_len)};
ASSERT_EQ(l.size(), r.size());
ASSERT_EQ(l, r);
std::string buffer;
Json::Dump(Json::Load(l, std::ios::binary), &buffer);
ASSERT_EQ(model_str_0.size(), buffer.size());
ASSERT_EQ(model_str_0.back(), '}');
ASSERT_TRUE(std::equal(model_str_0.begin(), model_str_0.end() - 1, buffer.begin()));
ASSERT_EQ(XGBoosterSaveModelToBuffer(handle, R"({})", &len, &data), -1);
ASSERT_EQ(XGBoosterSaveModelToBuffer(handle, R"({"format": "foo"})", &len, &data), -1);
}
TEST(CAPI, CatchDMLCError) {
DMatrixHandle out;
ASSERT_EQ(XGDMatrixCreateFromFile("foo", 0, &out), -1);
EXPECT_THROW({ dmlc::Stream::Create("foo", "r"); }, dmlc::Error);
}
TEST(CAPI, CatchDMLCErrorURI) {
Json config{Object()};
config["uri"] = String{"foo"};
config["silent"] = Integer{0};
std::string config_str;
Json::Dump(config, &config_str);
DMatrixHandle out;
ASSERT_EQ(XGDMatrixCreateFromURI(config_str.c_str(), &out), -1);
EXPECT_THROW({ dmlc::Stream::Create("foo", "r"); }, dmlc::Error);
}
TEST(CAPI, DMatrixSetFeatureName) {
size_t constexpr kRows = 10;
bst_feature_t constexpr kCols = 2;
DMatrixHandle handle;
std::vector<float> data(kCols * kRows, 1.5);
XGDMatrixCreateFromMat_omp(data.data(), kRows, kCols,
std::numeric_limits<float>::quiet_NaN(), &handle,
0);
std::vector<std::string> feature_names;
for (bst_feature_t i = 0; i < kCols; ++i) {
feature_names.emplace_back(std::to_string(i));
}
std::vector<char const*> c_feature_names;
c_feature_names.resize(feature_names.size());
std::transform(feature_names.cbegin(), feature_names.cend(),
c_feature_names.begin(),
[](auto const &str) { return str.c_str(); });
XGDMatrixSetStrFeatureInfo(handle, u8"feature_name", c_feature_names.data(),
c_feature_names.size());
bst_ulong out_len = 0;
char const **c_out_features;
XGDMatrixGetStrFeatureInfo(handle, u8"feature_name", &out_len,
&c_out_features);
CHECK_EQ(out_len, kCols);
std::vector<std::string> out_features;
for (bst_ulong i = 0; i < out_len; ++i) {
ASSERT_EQ(std::to_string(i), c_out_features[i]);
}
std::array<char const *, 2> feat_types{"i", "q"};
static_assert(sizeof(feat_types) / sizeof(feat_types[0]) == kCols);
XGDMatrixSetStrFeatureInfo(handle, "feature_type", feat_types.data(), kCols);
char const **c_out_types;
XGDMatrixGetStrFeatureInfo(handle, u8"feature_type", &out_len,
&c_out_types);
for (bst_ulong i = 0; i < out_len; ++i) {
ASSERT_STREQ(feat_types[i], c_out_types[i]);
}
XGDMatrixFree(handle);
}
int TestExceptionCatching() {
API_BEGIN();
throw std::bad_alloc();
API_END();
}
TEST(CAPI, Exception) {
ASSERT_NO_THROW({TestExceptionCatching();});
ASSERT_EQ(TestExceptionCatching(), -1);
auto error = XGBGetLastError();
// Not null
ASSERT_TRUE(error);
}
TEST(CAPI, XGBGlobalConfig) {
int ret;
{
const char *config_str = R"json(
{
"verbosity": 0,
"use_rmm": false
}
)json";
ret = XGBSetGlobalConfig(config_str);
ASSERT_EQ(ret, 0);
const char *updated_config_cstr;
ret = XGBGetGlobalConfig(&updated_config_cstr);
ASSERT_EQ(ret, 0);
std::string updated_config_str{updated_config_cstr};
auto updated_config =
Json::Load({updated_config_str.data(), updated_config_str.size()});
ASSERT_EQ(get<Integer>(updated_config["verbosity"]), 0);
ASSERT_EQ(get<Boolean>(updated_config["use_rmm"]), false);
}
{
const char *config_str = R"json(
{
"use_rmm": true
}
)json";
ret = XGBSetGlobalConfig(config_str);
ASSERT_EQ(ret, 0);
const char *updated_config_cstr;
ret = XGBGetGlobalConfig(&updated_config_cstr);
ASSERT_EQ(ret, 0);
std::string updated_config_str{updated_config_cstr};
auto updated_config =
Json::Load({updated_config_str.data(), updated_config_str.size()});
ASSERT_EQ(get<Boolean>(updated_config["use_rmm"]), true);
}
{
const char *config_str = R"json(
{
"foo": 0
}
)json";
ret = XGBSetGlobalConfig(config_str);
ASSERT_EQ(ret , -1);
auto err = std::string{XGBGetLastError()};
ASSERT_NE(err.find("foo"), std::string::npos);
}
{
const char *config_str = R"json(
{
"foo": 0,
"verbosity": 0
}
)json";
ret = XGBSetGlobalConfig(config_str);
ASSERT_EQ(ret , -1);
auto err = std::string{XGBGetLastError()};
ASSERT_NE(err.find("foo"), std::string::npos);
ASSERT_EQ(err.find("verbosity"), std::string::npos);
}
}
TEST(CAPI, BuildInfo) {
char const* out;
XGBuildInfo(&out);
auto loaded = Json::Load(StringView{out});
ASSERT_TRUE(get<Object const>(loaded).find("USE_OPENMP") != get<Object const>(loaded).cend());
#if defined(XGBOOST_USE_CUDA)
ASSERT_TRUE(get<Object const>(loaded).find("USE_CUDA") != get<Object const>(loaded).cend());
ASSERT_TRUE(get<Object const>(loaded).find("USE_NCCL") != get<Object const>(loaded).cend());
#elif defined(XGBOOST_USE_HIP)
ASSERT_TRUE(get<Object const>(loaded).find("USE_HIP") != get<Object const>(loaded).cend());
ASSERT_TRUE(get<Object const>(loaded).find("USE_RCCL") != get<Object const>(loaded).cend());
#endif
}
TEST(CAPI, NullPtr) {
ASSERT_EQ(XGBSetGlobalConfig(nullptr), -1);
auto const *err = XGBGetLastError();
auto pos = std::string{err}.find("Invalid pointer argument: json_str");
ASSERT_NE(pos, std::string::npos);
XGBAPISetLastError("");
}
TEST(CAPI, JArgs) {
{
Json args{Object{}};
args["key"] = String{"value"};
args["null"] = Null{};
auto value = OptionalArg<String>(args, "key", std::string{"foo"});
ASSERT_EQ(value, "value");
value = OptionalArg<String const>(args, "key", std::string{"foo"});
ASSERT_EQ(value, "value");
ASSERT_THROW({ OptionalArg<Number>(args, "key", 0.0f); }, dmlc::Error);
value = OptionalArg<String const>(args, "bar", std::string{"foo"});
ASSERT_EQ(value, "foo");
value = OptionalArg<String const>(args, "null", std::string{"foo"});
ASSERT_EQ(value, "foo");
}
{
Json args{Object{}};
args["key"] = String{"value"};
args["null"] = Null{};
auto value = RequiredArg<String>(args, "key", __func__);
ASSERT_EQ(value, "value");
value = RequiredArg<String const>(args, "key", __func__);
ASSERT_EQ(value, "value");
ASSERT_THROW({ RequiredArg<Integer>(args, "key", __func__); }, dmlc::Error);
ASSERT_THROW({ RequiredArg<String const>(args, "foo", __func__); }, dmlc::Error);
ASSERT_THROW({ RequiredArg<String>(args, "null", __func__); }, dmlc::Error);
}
}
namespace {
void MakeLabelForTest(std::shared_ptr<DMatrix> Xy, DMatrixHandle cxy) {
auto n_samples = Xy->Info().num_row_;
std::vector<float> y(n_samples);
for (std::size_t i = 0; i < y.size(); ++i) {
y[i] = static_cast<float>(i);
}
Xy->Info().labels.Reshape(n_samples);
Xy->Info().labels.Data()->HostVector() = y;
auto y_int = GetArrayInterface(Xy->Info().labels.Data(), n_samples, 1);
std::string s_y_int;
Json::Dump(y_int, &s_y_int);
XGDMatrixSetInfoFromInterface(cxy, "label", s_y_int.c_str());
}
auto MakeSimpleDMatrixForTest(bst_row_t n_samples, bst_feature_t n_features, Json dconfig) {
HostDeviceVector<float> storage;
auto arr_int = RandomDataGenerator{n_samples, n_features, 0.5f}.GenerateArrayInterface(&storage);
data::ArrayAdapter adapter{StringView{arr_int}};
std::shared_ptr<DMatrix> Xy{
DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), Context{}.Threads())};
DMatrixHandle p_fmat;
std::string s_dconfig;
Json::Dump(dconfig, &s_dconfig);
CHECK_EQ(XGDMatrixCreateFromDense(arr_int.c_str(), s_dconfig.c_str(), &p_fmat), 0);
MakeLabelForTest(Xy, p_fmat);
return std::pair{p_fmat, Xy};
}
auto MakeQDMForTest(Context const *ctx, bst_row_t n_samples, bst_feature_t n_features,
Json dconfig) {
bst_bin_t n_bins{16};
dconfig["max_bin"] = Integer{n_bins};
std::size_t n_batches{4};
std::unique_ptr<ArrayIterForTest> iter_0;
if (ctx->IsCUDA()) {
iter_0 = std::make_unique<CudaArrayIterForTest>(0.0f, n_samples, n_features, n_batches);
} else {
iter_0 = std::make_unique<NumpyArrayIterForTest>(0.0f, n_samples, n_features, n_batches);
}
std::string s_dconfig;
Json::Dump(dconfig, &s_dconfig);
DMatrixHandle p_fmat;
CHECK_EQ(XGQuantileDMatrixCreateFromCallback(static_cast<DataIterHandle>(iter_0.get()),
iter_0->Proxy(), nullptr, Reset, Next,
s_dconfig.c_str(), &p_fmat),
0);
std::unique_ptr<ArrayIterForTest> iter_1;
if (ctx->IsCUDA()) {
iter_1 = std::make_unique<CudaArrayIterForTest>(0.0f, n_samples, n_features, n_batches);
} else {
iter_1 = std::make_unique<NumpyArrayIterForTest>(0.0f, n_samples, n_features, n_batches);
}
auto Xy =
std::make_shared<data::IterativeDMatrix>(iter_1.get(), iter_1->Proxy(), nullptr, Reset, Next,
std::numeric_limits<float>::quiet_NaN(), 0, n_bins);
return std::pair{p_fmat, Xy};
}
auto MakeExtMemForTest(bst_row_t n_samples, bst_feature_t n_features, Json dconfig) {
std::size_t n_batches{4};
NumpyArrayIterForTest iter_0{0.0f, n_samples, n_features, n_batches};
std::string s_dconfig;
dconfig["cache_prefix"] = String{"cache"};
Json::Dump(dconfig, &s_dconfig);
DMatrixHandle p_fmat;
CHECK_EQ(XGDMatrixCreateFromCallback(static_cast<DataIterHandle>(&iter_0), iter_0.Proxy(), Reset,
Next, s_dconfig.c_str(), &p_fmat),
0);
NumpyArrayIterForTest iter_1{0.0f, n_samples, n_features, n_batches};
auto Xy = std::make_shared<data::SparsePageDMatrix>(
&iter_1, iter_1.Proxy(), Reset, Next, std::numeric_limits<float>::quiet_NaN(), 0, "");
MakeLabelForTest(Xy, p_fmat);
return std::pair{p_fmat, Xy};
}
template <typename Page>
void CheckResult(Context const *ctx, bst_feature_t n_features, std::shared_ptr<DMatrix> Xy,
float const *out_data, std::uint64_t const *out_indptr) {
for (auto const &page : Xy->GetBatches<Page>(ctx, BatchParam{16, 0.2})) {
auto const &cut = page.Cuts();
auto const &ptrs = cut.Ptrs();
auto const &vals = cut.Values();
auto const &mins = cut.MinValues();
for (bst_feature_t f = 0; f < Xy->Info().num_col_; ++f) {
ASSERT_EQ(ptrs[f] + f, out_indptr[f]);
ASSERT_EQ(mins[f], out_data[out_indptr[f]]);
auto beg = out_indptr[f];
auto end = out_indptr[f + 1];
auto val_beg = ptrs[f];
for (std::uint64_t i = beg + 1, j = val_beg; i < end; ++i, ++j) {
ASSERT_EQ(vals[j], out_data[i]);
}
}
ASSERT_EQ(ptrs[n_features] + n_features, out_indptr[n_features]);
}
}
void TestXGDMatrixGetQuantileCut(Context const *ctx) {
bst_row_t n_samples{1024};
bst_feature_t n_features{16};
Json dconfig{Object{}};
dconfig["ntread"] = Integer{Context{}.Threads()};
dconfig["missing"] = Number{std::numeric_limits<float>::quiet_NaN()};
auto check_result = [n_features, &ctx](std::shared_ptr<DMatrix> Xy, StringView s_out_data,
StringView s_out_indptr) {
auto i_out_data = ArrayInterface<1, false>{s_out_data};
ASSERT_EQ(i_out_data.type, ArrayInterfaceHandler::kF4);
auto out_data = static_cast<float const *>(i_out_data.data);
ASSERT_TRUE(out_data);
auto i_out_indptr = ArrayInterface<1, false>{s_out_indptr};
ASSERT_EQ(i_out_indptr.type, ArrayInterfaceHandler::kU8);
auto out_indptr = static_cast<std::uint64_t const *>(i_out_indptr.data);
ASSERT_TRUE(out_data);
if (ctx->IsCPU()) {
CheckResult<GHistIndexMatrix>(ctx, n_features, Xy, out_data, out_indptr);
} else {
CheckResult<EllpackPage>(ctx, n_features, Xy, out_data, out_indptr);
}
};
Json config{Null{}};
std::string s_config;
Json::Dump(config, &s_config);
char const *out_indptr;
char const *out_data;
{
// SimpleDMatrix
auto [p_fmat, Xy] = MakeSimpleDMatrixForTest(n_samples, n_features, dconfig);
// assert fail, we don't have the quantile yet.
ASSERT_EQ(XGDMatrixGetQuantileCut(p_fmat, s_config.c_str(), &out_indptr, &out_data), -1);
std::array<DMatrixHandle, 1> mats{p_fmat};
BoosterHandle booster;
ASSERT_EQ(XGBoosterCreate(mats.data(), 1, &booster), 0);
ASSERT_EQ(XGBoosterSetParam(booster, "max_bin", "16"), 0);
if (ctx->IsCUDA()) {
ASSERT_EQ(XGBoosterSetParam(booster, "device", ctx->DeviceName().c_str()), 0);
}
ASSERT_EQ(XGBoosterUpdateOneIter(booster, 0, p_fmat), 0);
ASSERT_EQ(XGDMatrixGetQuantileCut(p_fmat, s_config.c_str(), &out_indptr, &out_data), 0);
check_result(Xy, out_data, out_indptr);
XGDMatrixFree(p_fmat);
XGBoosterFree(booster);
}
{
// IterativeDMatrix
auto [p_fmat, Xy] = MakeQDMForTest(ctx, n_samples, n_features, dconfig);
ASSERT_EQ(XGDMatrixGetQuantileCut(p_fmat, s_config.c_str(), &out_indptr, &out_data), 0);
check_result(Xy, out_data, out_indptr);
XGDMatrixFree(p_fmat);
}
{
// SparsePageDMatrix
auto [p_fmat, Xy] = MakeExtMemForTest(n_samples, n_features, dconfig);
// assert fail, we don't have the quantile yet.
ASSERT_EQ(XGDMatrixGetQuantileCut(p_fmat, s_config.c_str(), &out_indptr, &out_data), -1);
std::array<DMatrixHandle, 1> mats{p_fmat};
BoosterHandle booster;
ASSERT_EQ(XGBoosterCreate(mats.data(), 1, &booster), 0);
ASSERT_EQ(XGBoosterSetParam(booster, "max_bin", "16"), 0);
if (ctx->IsCUDA()) {
ASSERT_EQ(XGBoosterSetParam(booster, "device", ctx->DeviceName().c_str()), 0);
}
ASSERT_EQ(XGBoosterUpdateOneIter(booster, 0, p_fmat), 0);
ASSERT_EQ(XGDMatrixGetQuantileCut(p_fmat, s_config.c_str(), &out_indptr, &out_data), 0);
XGDMatrixFree(p_fmat);
XGBoosterFree(booster);
}
}
} // namespace
TEST(CAPI, XGDMatrixGetQuantileCut) {
Context ctx;
TestXGDMatrixGetQuantileCut(&ctx);
}
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
TEST(CAPI, GPUXGDMatrixGetQuantileCut) {
auto ctx = MakeCUDACtx(0);
TestXGDMatrixGetQuantileCut(&ctx);
}
#endif // defined(XGBOOST_USE_CUDA)
} // namespace xgboost