* Do not derive from unittest.TestCase (not needed for pytest) * assertRaises -> pytest.raises * Simplify test_empty_dmatrix with test parametrization * setUpClass -> setup_class, tearDownClass -> teardown_class * Don't import unittest; import pytest * Use plain assert * Use parametrized tests in more places * Fix test_gpu_with_sklearn.py * Put back run_empty_dmatrix_reg / run_empty_dmatrix_cls * Fix test_eta_decay_gpu_hist * Add parametrized tests for monotone constraints * Fix test names * Remove test parametrization * Revise test_slice to be not flaky
74 lines
2.3 KiB
Python
74 lines
2.3 KiB
Python
# -*- coding: utf-8 -*-
|
|
import xgboost as xgb
|
|
import numpy as np
|
|
|
|
|
|
class TestOMP:
|
|
def test_omp(self):
|
|
dpath = 'demo/data/'
|
|
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
|
|
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
|
|
|
|
param = {'booster': 'gbtree',
|
|
'objective': 'binary:logistic',
|
|
'grow_policy': 'depthwise',
|
|
'tree_method': 'hist',
|
|
'eval_metric': 'error',
|
|
'max_depth': 5,
|
|
'min_child_weight': 0}
|
|
|
|
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
|
|
num_round = 5
|
|
|
|
def run_trial():
|
|
res = {}
|
|
bst = xgb.train(param, dtrain, num_round, watchlist, evals_result=res)
|
|
metrics = [res['train']['error'][-1], res['eval']['error'][-1]]
|
|
preds = bst.predict(dtest)
|
|
return metrics, preds
|
|
|
|
def consist_test(title, n):
|
|
auc, pred = run_trial()
|
|
for i in range(n-1):
|
|
auc2, pred2 = run_trial()
|
|
try:
|
|
assert auc == auc2
|
|
assert np.array_equal(pred, pred2)
|
|
except Exception as e:
|
|
print('-------test %s failed, num_trial: %d-------' % (title, i))
|
|
raise e
|
|
auc, pred = auc2, pred2
|
|
return auc, pred
|
|
|
|
print('test approx ...')
|
|
param['tree_method'] = 'approx'
|
|
|
|
param['nthread'] = 1
|
|
auc_1, pred_1 = consist_test('approx_thread_1', 100)
|
|
|
|
param['nthread'] = 2
|
|
auc_2, pred_2 = consist_test('approx_thread_2', 100)
|
|
|
|
param['nthread'] = 3
|
|
auc_3, pred_3 = consist_test('approx_thread_3', 100)
|
|
|
|
assert auc_1 == auc_2 == auc_3
|
|
assert np.array_equal(auc_1, auc_2)
|
|
assert np.array_equal(auc_1, auc_3)
|
|
|
|
print('test hist ...')
|
|
param['tree_method'] = 'hist'
|
|
|
|
param['nthread'] = 1
|
|
auc_1, pred_1 = consist_test('hist_thread_1', 100)
|
|
|
|
param['nthread'] = 2
|
|
auc_2, pred_2 = consist_test('hist_thread_2', 100)
|
|
|
|
param['nthread'] = 3
|
|
auc_3, pred_3 = consist_test('hist_thread_3', 100)
|
|
|
|
assert auc_1 == auc_2 == auc_3
|
|
assert np.array_equal(auc_1, auc_2)
|
|
assert np.array_equal(auc_1, auc_3)
|