* Added plugin with DPC++-based predictor and objective function * Update CMakeLists.txt * Update regression_obj_oneapi.cc * Added README.md for OneAPI plugin * Added OneAPI predictor support to gbtree * Update README.md * Merged kernels in gradient computation. Enabled multiple loss functions with DPC++ backend * Aligned plugin CMake files with latest master changes. Fixed whitespace typos * Removed debug output * [CI] Make oneapi_plugin a CMake target * Added tests for OneAPI plugin for predictor and obj. functions * Temporarily switched to default selector for device dispacthing in OneAPI plugin to enable execution in environments without gpus * Updated readme file. * Fixed USM usage in predictor * Removed workaround with explicit templated names for DPC++ kernels * Fixed warnings in plugin tests * Fix CMake build of gtest Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
183 lines
6.8 KiB
C++
Executable File
183 lines
6.8 KiB
C++
Executable File
#include <xgboost/logging.h>
|
|
#include <xgboost/objective.h>
|
|
#include <cmath>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "xgboost/host_device_vector.h"
|
|
#include "xgboost/json.h"
|
|
#include "xgboost/parameter.h"
|
|
#include "xgboost/span.h"
|
|
|
|
#include "../../src/common/transform.h"
|
|
#include "../../src/common/common.h"
|
|
#include "./regression_loss_oneapi.h"
|
|
|
|
#include "CL/sycl.hpp"
|
|
|
|
namespace xgboost {
|
|
namespace obj {
|
|
|
|
DMLC_REGISTRY_FILE_TAG(regression_obj_oneapi);
|
|
|
|
struct RegLossParamOneAPI : public XGBoostParameter<RegLossParamOneAPI> {
|
|
float scale_pos_weight;
|
|
// declare parameters
|
|
DMLC_DECLARE_PARAMETER(RegLossParamOneAPI) {
|
|
DMLC_DECLARE_FIELD(scale_pos_weight).set_default(1.0f).set_lower_bound(0.0f)
|
|
.describe("Scale the weight of positive examples by this factor");
|
|
}
|
|
};
|
|
|
|
template<typename Loss>
|
|
class RegLossObjOneAPI : public ObjFunction {
|
|
protected:
|
|
HostDeviceVector<int> label_correct_;
|
|
|
|
public:
|
|
RegLossObjOneAPI() = default;
|
|
|
|
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
|
|
param_.UpdateAllowUnknown(args);
|
|
|
|
cl::sycl::default_selector selector;
|
|
qu_ = cl::sycl::queue(selector);
|
|
}
|
|
|
|
void GetGradient(const HostDeviceVector<bst_float>& preds,
|
|
const MetaInfo &info,
|
|
int iter,
|
|
HostDeviceVector<GradientPair>* out_gpair) override {
|
|
if (info.labels_.Size() == 0U) {
|
|
LOG(WARNING) << "Label set is empty.";
|
|
}
|
|
CHECK_EQ(preds.Size(), info.labels_.Size())
|
|
<< " " << "labels are not correctly provided"
|
|
<< "preds.size=" << preds.Size() << ", label.size=" << info.labels_.Size() << ", "
|
|
<< "Loss: " << Loss::Name();
|
|
|
|
size_t const ndata = preds.Size();
|
|
out_gpair->Resize(ndata);
|
|
|
|
// TODO: add label_correct check
|
|
label_correct_.Resize(1);
|
|
label_correct_.Fill(1);
|
|
|
|
bool is_null_weight = info.weights_.Size() == 0;
|
|
|
|
cl::sycl::buffer<bst_float, 1> preds_buf(preds.HostPointer(), preds.Size());
|
|
cl::sycl::buffer<bst_float, 1> labels_buf(info.labels_.HostPointer(), info.labels_.Size());
|
|
cl::sycl::buffer<GradientPair, 1> out_gpair_buf(out_gpair->HostPointer(), out_gpair->Size());
|
|
cl::sycl::buffer<bst_float, 1> weights_buf(is_null_weight ? NULL : info.weights_.HostPointer(),
|
|
is_null_weight ? 1 : info.weights_.Size());
|
|
|
|
cl::sycl::buffer<int, 1> additional_input_buf(1);
|
|
{
|
|
auto additional_input_acc = additional_input_buf.get_access<cl::sycl::access::mode::write>();
|
|
additional_input_acc[0] = 1; // Fill the label_correct flag
|
|
}
|
|
|
|
auto scale_pos_weight = param_.scale_pos_weight;
|
|
if (!is_null_weight) {
|
|
CHECK_EQ(info.weights_.Size(), ndata)
|
|
<< "Number of weights should be equal to number of data points.";
|
|
}
|
|
|
|
qu_.submit([&](cl::sycl::handler& cgh) {
|
|
auto preds_acc = preds_buf.get_access<cl::sycl::access::mode::read>(cgh);
|
|
auto labels_acc = labels_buf.get_access<cl::sycl::access::mode::read>(cgh);
|
|
auto weights_acc = weights_buf.get_access<cl::sycl::access::mode::read>(cgh);
|
|
auto out_gpair_acc = out_gpair_buf.get_access<cl::sycl::access::mode::write>(cgh);
|
|
auto additional_input_acc = additional_input_buf.get_access<cl::sycl::access::mode::write>(cgh);
|
|
cgh.parallel_for<>(cl::sycl::range<1>(ndata), [=](cl::sycl::id<1> pid) {
|
|
int idx = pid[0];
|
|
bst_float p = Loss::PredTransform(preds_acc[idx]);
|
|
bst_float w = is_null_weight ? 1.0f : weights_acc[idx];
|
|
bst_float label = labels_acc[idx];
|
|
if (label == 1.0f) {
|
|
w *= scale_pos_weight;
|
|
}
|
|
if (!Loss::CheckLabel(label)) {
|
|
// If there is an incorrect label, the host code will know.
|
|
additional_input_acc[0] = 0;
|
|
}
|
|
out_gpair_acc[idx] = GradientPair(Loss::FirstOrderGradient(p, label) * w,
|
|
Loss::SecondOrderGradient(p, label) * w);
|
|
});
|
|
}).wait();
|
|
|
|
int flag = 1;
|
|
{
|
|
auto additional_input_acc = additional_input_buf.get_access<cl::sycl::access::mode::read>();
|
|
flag = additional_input_acc[0];
|
|
}
|
|
|
|
if (flag == 0) {
|
|
LOG(FATAL) << Loss::LabelErrorMsg();
|
|
}
|
|
|
|
}
|
|
|
|
public:
|
|
const char* DefaultEvalMetric() const override {
|
|
return Loss::DefaultEvalMetric();
|
|
}
|
|
|
|
void PredTransform(HostDeviceVector<float> *io_preds) override {
|
|
size_t const ndata = io_preds->Size();
|
|
|
|
cl::sycl::buffer<bst_float, 1> io_preds_buf(io_preds->HostPointer(), io_preds->Size());
|
|
|
|
qu_.submit([&](cl::sycl::handler& cgh) {
|
|
auto io_preds_acc = io_preds_buf.get_access<cl::sycl::access::mode::read_write>(cgh);
|
|
cgh.parallel_for<>(cl::sycl::range<1>(ndata), [=](cl::sycl::id<1> pid) {
|
|
int idx = pid[0];
|
|
io_preds_acc[idx] = Loss::PredTransform(io_preds_acc[idx]);
|
|
});
|
|
}).wait();
|
|
}
|
|
|
|
float ProbToMargin(float base_score) const override {
|
|
return Loss::ProbToMargin(base_score);
|
|
}
|
|
|
|
void SaveConfig(Json* p_out) const override {
|
|
auto& out = *p_out;
|
|
out["name"] = String(Loss::Name());
|
|
out["reg_loss_param"] = ToJson(param_);
|
|
}
|
|
|
|
void LoadConfig(Json const& in) override {
|
|
FromJson(in["reg_loss_param"], ¶m_);
|
|
}
|
|
|
|
protected:
|
|
RegLossParamOneAPI param_;
|
|
|
|
cl::sycl::queue qu_;
|
|
};
|
|
|
|
// register the objective functions
|
|
DMLC_REGISTER_PARAMETER(RegLossParamOneAPI);
|
|
|
|
// TODO: Find a better way to dispatch names of DPC++ kernels with various template parameters of loss function
|
|
XGBOOST_REGISTER_OBJECTIVE(SquaredLossRegressionOneAPI, LinearSquareLossOneAPI::Name())
|
|
.describe("Regression with squared error with DPC++ backend.")
|
|
.set_body([]() { return new RegLossObjOneAPI<LinearSquareLossOneAPI>(); });
|
|
XGBOOST_REGISTER_OBJECTIVE(SquareLogErrorOneAPI, SquaredLogErrorOneAPI::Name())
|
|
.describe("Regression with root mean squared logarithmic error with DPC++ backend.")
|
|
.set_body([]() { return new RegLossObjOneAPI<SquaredLogErrorOneAPI>(); });
|
|
XGBOOST_REGISTER_OBJECTIVE(LogisticRegressionOneAPI, LogisticRegressionOneAPI::Name())
|
|
.describe("Logistic regression for probability regression task with DPC++ backend.")
|
|
.set_body([]() { return new RegLossObjOneAPI<LogisticRegressionOneAPI>(); });
|
|
XGBOOST_REGISTER_OBJECTIVE(LogisticClassificationOneAPI, LogisticClassificationOneAPI::Name())
|
|
.describe("Logistic regression for binary classification task with DPC++ backend.")
|
|
.set_body([]() { return new RegLossObjOneAPI<LogisticClassificationOneAPI>(); });
|
|
XGBOOST_REGISTER_OBJECTIVE(LogisticRawOneAPI, LogisticRawOneAPI::Name())
|
|
.describe("Logistic regression for classification, output score "
|
|
"before logistic transformation with DPC++ backend.")
|
|
.set_body([]() { return new RegLossObjOneAPI<LogisticRawOneAPI>(); });
|
|
|
|
} // namespace obj
|
|
} // namespace xgboost
|