xgboost/tests/cpp/predictor/test_gpu_predictor.cu
Andrew V. Adinetz d5992dd881 Replaced std::vector-based interfaces with HostDeviceVector-based interfaces. (#3116)
* Replaced std::vector-based interfaces with HostDeviceVector-based interfaces.

- replacement was performed in the learner, boosters, predictors,
  updaters, and objective functions
- only interfaces used in training were replaced;
  interfaces like PredictInstance() still use std::vector
- refactoring necessary for replacement of interfaces was also performed,
  such as using HostDeviceVector in prediction cache

* HostDeviceVector-based interfaces for custom objective function example plugin.
2018-02-28 13:00:04 +13:00

79 lines
2.9 KiB
Plaintext

/*!
* Copyright 2017 XGBoost contributors
*/
#include <xgboost/c_api.h>
#include <xgboost/predictor.h>
#include "gtest/gtest.h"
#include "../helpers.h"
namespace xgboost {
namespace predictor {
TEST(gpu_predictor, Test) {
std::unique_ptr<Predictor> gpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor"));
std::unique_ptr<Predictor> cpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor"));
gpu_predictor->Init({}, {});
cpu_predictor->Init({}, {});
std::vector<std::unique_ptr<RegTree>> trees;
trees.push_back(std::unique_ptr<RegTree>(new RegTree()));
trees.back()->InitModel();
(*trees.back())[0].set_leaf(1.5f);
(*trees.back()).stat(0).sum_hess = 1.0f;
gbm::GBTreeModel model(0.5);
model.CommitModel(std::move(trees), 0);
model.param.num_output_group = 1;
int n_row = 5;
int n_col = 5;
auto dmat = CreateDMatrix(n_row, n_col, 0);
// Test predict batch
HostDeviceVector<float> gpu_out_predictions;
HostDeviceVector<float> cpu_out_predictions;
gpu_predictor->PredictBatch(dmat.get(), &gpu_out_predictions, model, 0);
cpu_predictor->PredictBatch(dmat.get(), &cpu_out_predictions, model, 0);
std::vector<float>& gpu_out_predictions_h = gpu_out_predictions.data_h();
std::vector<float>& cpu_out_predictions_h = cpu_out_predictions.data_h();
float abs_tolerance = 0.001;
for (int i = 0; i < gpu_out_predictions.size(); i++) {
ASSERT_LT(std::abs(gpu_out_predictions_h[i] - cpu_out_predictions_h[i]),
abs_tolerance);
}
// Test predict instance
auto batch = dmat->RowIterator()->Value();
for (int i = 0; i < batch.size; i++) {
std::vector<float> gpu_instance_out_predictions;
std::vector<float> cpu_instance_out_predictions;
cpu_predictor->PredictInstance(batch[i], &cpu_instance_out_predictions,
model);
gpu_predictor->PredictInstance(batch[i], &gpu_instance_out_predictions,
model);
ASSERT_EQ(gpu_instance_out_predictions[0], cpu_instance_out_predictions[0]);
}
// Test predict leaf
std::vector<float> gpu_leaf_out_predictions;
std::vector<float> cpu_leaf_out_predictions;
cpu_predictor->PredictLeaf(dmat.get(), &cpu_leaf_out_predictions, model);
gpu_predictor->PredictLeaf(dmat.get(), &gpu_leaf_out_predictions, model);
for (int i = 0; i < gpu_leaf_out_predictions.size(); i++) {
ASSERT_EQ(gpu_leaf_out_predictions[i], cpu_leaf_out_predictions[i]);
}
// Test predict contribution
std::vector<float> gpu_out_contribution;
std::vector<float> cpu_out_contribution;
cpu_predictor->PredictContribution(dmat.get(), &cpu_out_contribution, model);
gpu_predictor->PredictContribution(dmat.get(), &gpu_out_contribution, model);
for (int i = 0; i < gpu_out_contribution.size(); i++) {
ASSERT_EQ(gpu_out_contribution[i], cpu_out_contribution[i]);
}
}
} // namespace predictor
} // namespace xgboost