xgboost/tests/cpp/metric/test_auc.h
2023-08-04 15:14:31 +08:00

250 lines
10 KiB
C++

/*!
* Copyright (c) 2023 by XGBoost Contributors
*/
#pragma once
#include <xgboost/metric.h>
#include "../helpers.h"
namespace xgboost {
namespace metric {
inline void VerifyBinaryAUC(DataSplitMode data_split_mode = DataSplitMode::kRow) {
auto ctx = MakeCUDACtx(GPUIDX);
std::unique_ptr<Metric> uni_ptr{Metric::Create("auc", &ctx)};
Metric* metric = uni_ptr.get();
ASSERT_STREQ(metric->Name(), "auc");
// Binary
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 1.0f, 1e-10);
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {1, 0}, {}, {}, data_split_mode), 0.0f, 1e-10);
EXPECT_NEAR(GetMetricEval(metric, {0, 0}, {0, 1}, {}, {}, data_split_mode), 0.5f, 1e-10);
EXPECT_NEAR(GetMetricEval(metric, {1, 1}, {0, 1}, {}, {}, data_split_mode), 0.5f, 1e-10);
EXPECT_NEAR(GetMetricEval(metric, {0, 0}, {1, 0}, {}, {}, data_split_mode), 0.5f, 1e-10);
EXPECT_NEAR(GetMetricEval(metric, {1, 1}, {1, 0}, {}, {}, data_split_mode), 0.5f, 1e-10);
EXPECT_NEAR(GetMetricEval(metric, {1, 0, 0}, {0, 0, 1}, {}, {}, data_split_mode), 0.25f, 1e-10);
// Invalid dataset
auto p_fmat = EmptyDMatrix();
MetaInfo& info = p_fmat->Info();
info.labels = linalg::Tensor<float, 2>{{0.0f, 0.0f}, {2}, -1};
float auc = metric->Evaluate({1, 1}, p_fmat);
ASSERT_TRUE(std::isnan(auc));
*info.labels.Data() = HostDeviceVector<float>{};
auc = metric->Evaluate(HostDeviceVector<float>{}, p_fmat);
ASSERT_TRUE(std::isnan(auc));
EXPECT_NEAR(GetMetricEval(metric, {0, 1, 0, 1}, {0, 1, 0, 1}, {}, {}, data_split_mode), 1.0f,
1e-10);
// AUC with instance weights
EXPECT_NEAR(GetMetricEval(metric, {0.9f, 0.1f, 0.4f, 0.3f}, {0, 0, 1, 1},
{1.0f, 3.0f, 2.0f, 4.0f}, {}, data_split_mode),
0.75f, 0.001f);
// regression test case
ASSERT_NEAR(GetMetricEval(metric, {0.79523796, 0.5201713, 0.79523796, 0.24273258, 0.53452194,
0.53452194, 0.24273258, 0.5201713, 0.79523796, 0.53452194,
0.24273258, 0.53452194, 0.79523796, 0.5201713, 0.24273258,
0.5201713, 0.5201713, 0.53452194, 0.5201713, 0.53452194},
{0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0}, {}, {},
data_split_mode),
0.5, 1e-10);
}
inline void VerifyMultiClassAUC(DataSplitMode data_split_mode = DataSplitMode::kRow) {
auto ctx = MakeCUDACtx(GPUIDX);
std::unique_ptr<Metric> uni_ptr{Metric::Create("auc", &ctx)};
auto metric = uni_ptr.get();
// MultiClass
// 3x3
EXPECT_NEAR(GetMetricEval(metric,
{
1.0f, 0.0f, 0.0f, // p_0
0.0f, 1.0f, 0.0f, // p_1
0.0f, 0.0f, 1.0f // p_2
},
{0, 1, 2}, {}, {}, data_split_mode),
1.0f, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{
1.0f, 0.0f, 0.0f, // p_0
0.0f, 1.0f, 0.0f, // p_1
0.0f, 0.0f, 1.0f // p_2
},
{0, 1, 2}, {1.0f, 1.0f, 1.0f}, {}, data_split_mode),
1.0f, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{
1.0f, 0.0f, 0.0f, // p_0
0.0f, 1.0f, 0.0f, // p_1
0.0f, 0.0f, 1.0f // p_2
},
{2, 1, 0}, {}, {}, data_split_mode),
0.5f, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{
1.0f, 0.0f, 0.0f, // p_0
0.0f, 1.0f, 0.0f, // p_1
0.0f, 0.0f, 1.0f // p_2
},
{2, 0, 1}, {}, {}, data_split_mode),
0.25f, 1e-10);
// invalid dataset
float auc = GetMetricEval(metric,
{
1.0f, 0.0f, 0.0f, // p_0
0.0f, 1.0f, 0.0f, // p_1
0.0f, 0.0f, 1.0f // p_2
},
{0, 1, 1}, {}, {}, data_split_mode); // no class 2.
EXPECT_TRUE(std::isnan(auc)) << auc;
HostDeviceVector<float> predts{
0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
};
std::vector<float> labels{1.0f, 0.0f, 2.0f, 1.0f};
auc = GetMetricEval(metric, predts, labels, {1.0f, 2.0f, 3.0f, 4.0f}, {}, data_split_mode);
ASSERT_GT(auc, 0.714);
}
inline void VerifyRankingAUC(DataSplitMode data_split_mode = DataSplitMode::kRow) {
auto ctx = MakeCUDACtx(GPUIDX);
std::unique_ptr<Metric> metric{Metric::Create("auc", &ctx)};
// single group
EXPECT_NEAR(GetMetricEval(metric.get(), {0.7f, 0.2f, 0.3f, 0.6f}, {1.0f, 0.8f, 0.4f, 0.2f},
/*weights=*/{}, {0, 4}, data_split_mode),
0.5f, 1e-10);
// multi group
EXPECT_NEAR(GetMetricEval(metric.get(), {0, 1, 2, 0, 1, 2}, {0, 1, 2, 0, 1, 2}, /*weights=*/{},
{0, 3, 6}, data_split_mode),
1.0f, 1e-10);
EXPECT_NEAR(GetMetricEval(metric.get(), {0, 1, 2, 0, 1, 2}, {0, 1, 2, 0, 1, 2},
/*weights=*/{1.0f, 2.0f}, {0, 3, 6}, data_split_mode),
1.0f, 1e-10);
// AUC metric for grouped datasets - exception scenarios
ASSERT_TRUE(std::isnan(
GetMetricEval(metric.get(), {0, 1, 2}, {0, 0, 0}, {}, {0, 2, 3}, data_split_mode)));
// regression case
HostDeviceVector<float> predt{
0.33935383, 0.5149714, 0.32138085, 1.4547751, 1.2010975, 0.42651367, 0.23104341, 0.83610827,
0.8494239, 0.07136688, 0.5623144, 0.8086237, 1.5066161, -4.094787, 0.76887935, -2.4082742};
std::vector<bst_group_t> groups{0, 7, 16};
std::vector<float> labels{1., 0., 0., 1., 2., 1., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0.};
EXPECT_NEAR(GetMetricEval(metric.get(), std::move(predt), labels,
/*weights=*/{}, groups, data_split_mode),
0.769841f, 1e-6);
}
inline void VerifyPRAUC(DataSplitMode data_split_mode = DataSplitMode::kRow) {
auto ctx = MakeCUDACtx(GPUIDX);
xgboost::Metric* metric = xgboost::Metric::Create("aucpr", &ctx);
ASSERT_STREQ(metric->Name(), "aucpr");
EXPECT_NEAR(GetMetricEval(metric, {0, 0, 1, 1}, {0, 0, 1, 1}, {}, {}, data_split_mode), 1, 1e-10);
EXPECT_NEAR(
GetMetricEval(metric, {0.1f, 0.9f, 0.1f, 0.9f}, {0, 0, 1, 1}, {}, {}, data_split_mode), 0.5f,
0.001f);
EXPECT_NEAR(GetMetricEval(metric, {0.4f, 0.2f, 0.9f, 0.1f, 0.2f, 0.4f, 0.1f, 0.1f, 0.2f, 0.1f},
{0, 0, 0, 0, 0, 1, 0, 0, 1, 1}, {}, {}, data_split_mode),
0.2908445f, 0.001f);
EXPECT_NEAR(
GetMetricEval(metric, {0.87f, 0.31f, 0.40f, 0.42f, 0.25f, 0.66f, 0.95f, 0.09f, 0.10f, 0.97f,
0.76f, 0.69f, 0.15f, 0.20f, 0.30f, 0.14f, 0.07f, 0.58f, 0.61f, 0.08f},
{0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1}, {}, {},
data_split_mode),
0.2769199f, 0.001f);
auto auc = GetMetricEval(metric, {0, 1}, {}, {}, {}, data_split_mode);
ASSERT_TRUE(std::isnan(auc));
// AUCPR with instance weights
EXPECT_NEAR(GetMetricEval(metric,
{0.29f, 0.52f, 0.11f, 0.21f, 0.219f, 0.93f, 0.493f, 0.17f, 0.47f, 0.13f,
0.43f, 0.59f, 0.87f, 0.007f},
{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0},
{1, 2, 7, 4, 5, 2.2f, 3.2f, 5, 6, 1, 2, 1.1f, 3.2f, 4.5f}, // weights
{}, data_split_mode),
0.694435f, 0.001f);
// Both groups contain only pos or neg samples.
auc = GetMetricEval(metric, {0, 0.1f, 0.3f, 0.5f, 0.7f}, {1, 1, 0, 0, 0}, {}, {0, 2, 5},
data_split_mode);
ASSERT_TRUE(std::isnan(auc));
delete metric;
}
inline void VerifyMultiClassPRAUC(DataSplitMode data_split_mode = DataSplitMode::kRow) {
auto ctx = MakeCUDACtx(GPUIDX);
std::unique_ptr<Metric> metric{Metric::Create("aucpr", &ctx)};
float auc = 0;
std::vector<float> labels{1.0f, 0.0f, 2.0f};
HostDeviceVector<float> predts{
0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
};
auc = GetMetricEval(metric.get(), predts, labels, {}, {}, data_split_mode);
EXPECT_EQ(auc, 1.0f);
auc = GetMetricEval(metric.get(), predts, labels, {1.0f, 1.0f, 1.0f}, {}, data_split_mode);
EXPECT_EQ(auc, 1.0f);
predts.HostVector() = {
0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
};
labels = {1.0f, 0.0f, 2.0f, 1.0f};
auc = GetMetricEval(metric.get(), predts, labels, {1.0f, 2.0f, 3.0f, 4.0f}, {}, data_split_mode);
ASSERT_GT(auc, 0.699);
}
inline void VerifyRankingPRAUC(DataSplitMode data_split_mode = DataSplitMode::kRow) {
auto ctx = MakeCUDACtx(GPUIDX);
std::unique_ptr<Metric> metric{Metric::Create("aucpr", &ctx)};
std::vector<float> labels{1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f};
std::vector<uint32_t> groups{0, 2, 6};
float auc = 0;
auc = GetMetricEval(metric.get(), {1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f}, labels, {}, groups,
data_split_mode);
EXPECT_EQ(auc, 1.0f);
auc = GetMetricEval(metric.get(), {1.0f, 0.5f, 0.8f, 0.3f, 0.2f, 1.0f}, labels, {}, groups,
data_split_mode);
EXPECT_EQ(auc, 1.0f);
auc = GetMetricEval(metric.get(), {1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f},
{1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f}, {}, groups, data_split_mode);
ASSERT_TRUE(std::isnan(auc));
// Incorrect label
ASSERT_THROW(GetMetricEval(metric.get(), {1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f},
{1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 3.0f}, {}, groups, data_split_mode),
dmlc::Error);
// AUCPR with groups and no weights
EXPECT_NEAR(
GetMetricEval(metric.get(),
{0.87f, 0.31f, 0.40f, 0.42f, 0.25f, 0.66f, 0.95f, 0.09f, 0.10f, 0.97f,
0.76f, 0.69f, 0.15f, 0.20f, 0.30f, 0.14f, 0.07f, 0.58f, 0.61f, 0.08f},
{0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1}, {}, // weights
{0, 2, 5, 9, 14, 20}, // group info
data_split_mode),
0.556021f, 0.001f);
}
} // namespace metric
} // namespace xgboost