xgboost/tests/cpp/plugin/test_federated_learner.cc

121 lines
3.8 KiB
C++

/*!
* Copyright 2023 XGBoost contributors
*/
#include <dmlc/parameter.h>
#include <gtest/gtest.h>
#include <xgboost/data.h>
#include <xgboost/objective.h>
#include "../../../plugin/federated/federated_server.h"
#include "../../../src/collective/communicator-inl.h"
#include "../../../src/common/linalg_op.h"
#include "../helpers.h"
#include "../objective_helpers.h" // for MakeObjNamesForTest, ObjTestNameGenerator
#include "helpers.h"
namespace xgboost {
namespace {
auto MakeModel(std::string objective, std::shared_ptr<DMatrix> dmat) {
std::unique_ptr<Learner> learner{Learner::Create({dmat})};
learner->SetParam("tree_method", "approx");
learner->SetParam("objective", objective);
if (objective.find("quantile") != std::string::npos) {
learner->SetParam("quantile_alpha", "0.5");
}
if (objective.find("multi") != std::string::npos) {
learner->SetParam("num_class", "3");
}
learner->UpdateOneIter(0, dmat);
Json config{Object{}};
learner->SaveConfig(&config);
Json model{Object{}};
learner->SaveModel(&model);
return model;
}
void VerifyObjective(size_t rows, size_t cols, float expected_base_score, Json expected_model,
std::string objective) {
auto const world_size = collective::GetWorldSize();
auto const rank = collective::GetRank();
std::shared_ptr<DMatrix> dmat{RandomDataGenerator{rows, cols, 0}.GenerateDMatrix(rank == 0)};
if (rank == 0) {
auto &h_upper = dmat->Info().labels_upper_bound_.HostVector();
auto &h_lower = dmat->Info().labels_lower_bound_.HostVector();
h_lower.resize(rows);
h_upper.resize(rows);
for (size_t i = 0; i < rows; ++i) {
h_lower[i] = 1;
h_upper[i] = 10;
}
if (objective.find("rank:") != std::string::npos) {
auto h_label = dmat->Info().labels.HostView();
std::size_t k = 0;
for (auto &v : h_label) {
v = k % 2 == 0;
++k;
}
}
}
std::shared_ptr<DMatrix> sliced{dmat->SliceCol(world_size, rank)};
auto model = MakeModel(objective, sliced);
auto base_score = GetBaseScore(model);
ASSERT_EQ(base_score, expected_base_score);
ASSERT_EQ(model, expected_model);
}
} // namespace
class FederatedLearnerTest : public ::testing::TestWithParam<std::string> {
std::unique_ptr<ServerForTest> server_;
static int constexpr kWorldSize{3};
protected:
void SetUp() override { server_ = std::make_unique<ServerForTest>(kWorldSize); }
void TearDown() override { server_.reset(nullptr); }
void Run(std::string objective) {
static auto constexpr kRows{16};
static auto constexpr kCols{16};
std::shared_ptr<DMatrix> dmat{RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(true)};
auto &h_upper = dmat->Info().labels_upper_bound_.HostVector();
auto &h_lower = dmat->Info().labels_lower_bound_.HostVector();
h_lower.resize(kRows);
h_upper.resize(kRows);
for (size_t i = 0; i < kRows; ++i) {
h_lower[i] = 1;
h_upper[i] = 10;
}
if (objective.find("rank:") != std::string::npos) {
auto h_label = dmat->Info().labels.HostView();
std::size_t k = 0;
for (auto &v : h_label) {
v = k % 2 == 0;
++k;
}
}
auto model = MakeModel(objective, dmat);
auto score = GetBaseScore(model);
RunWithFederatedCommunicator(kWorldSize, server_->Address(), &VerifyObjective, kRows, kCols,
score, model, objective);
}
};
TEST_P(FederatedLearnerTest, Objective) {
std::string objective = GetParam();
this->Run(objective);
}
INSTANTIATE_TEST_SUITE_P(FederatedLearnerObjective, FederatedLearnerTest,
::testing::ValuesIn(MakeObjNamesForTest()),
[](const ::testing::TestParamInfo<FederatedLearnerTest::ParamType> &info) {
return ObjTestNameGenerator(info);
});
} // namespace xgboost