xgboost/tests/python/test_parse_tree.py
Jiaming Yuan 1f9a57d17b
[Breaking] Require format to be specified in input URI. (#9077)
Previously, we use `libsvm` as default when format is not specified. However, the dmlc
data parser is not particularly robust against errors, and the most common type of error
is undefined format.

Along with which, we will recommend users to use other data loader instead. We will
continue the maintenance of the parsers as it's currently used for many internal tests
including federated learning.
2023-04-28 19:45:15 +08:00

73 lines
2.7 KiB
Python

import numpy as np
import pytest
import xgboost as xgb
from xgboost import testing as tm
pytestmark = pytest.mark.skipif(**tm.no_pandas())
dpath = 'demo/data/'
rng = np.random.RandomState(1994)
class TestTreesToDataFrame:
def build_model(self, max_depth, num_round):
dtrain, _ = tm.load_agaricus(__file__)
param = {'max_depth': max_depth, 'objective': 'binary:logistic',
'verbosity': 1}
num_round = num_round
bst = xgb.train(param, dtrain, num_round)
return bst
def parse_dumped_model(self, booster, item_to_get, splitter):
item_to_get += '='
txt_dump = booster.get_dump(with_stats=True)
tree_list = [tree.split('/n') for tree in txt_dump]
split_trees = [tree[0].split(item_to_get)[1:] for tree in tree_list]
res = sum([float(line.split(splitter)[0])
for tree in split_trees for line in tree])
return res
def test_trees_to_dataframe(self):
bst = self.build_model(max_depth=5, num_round=10)
gain_from_dump = self.parse_dumped_model(booster=bst,
item_to_get='gain',
splitter=',')
cover_from_dump = self.parse_dumped_model(booster=bst,
item_to_get='cover',
splitter='\n')
# method being tested
df = bst.trees_to_dataframe()
# test for equality of gains
gain_from_df = df[df.Feature != 'Leaf'][['Gain']].sum()
assert np.allclose(gain_from_dump, gain_from_df)
# test for equality of covers
cover_from_df = df.Cover.sum()
assert np.allclose(cover_from_dump, cover_from_df)
def run_tree_to_df_categorical(self, tree_method: str) -> None:
X, y = tm.make_categorical(100, 10, 31, False)
Xy = xgb.DMatrix(X, y, enable_categorical=True)
booster = xgb.train({"tree_method": tree_method}, Xy, num_boost_round=10)
df = booster.trees_to_dataframe()
for _, x in df.iterrows():
if x["Feature"] != "Leaf":
assert len(x["Category"]) >= 1
def test_tree_to_df_categorical(self) -> None:
self.run_tree_to_df_categorical("approx")
def run_split_value_histograms(self, tree_method) -> None:
X, y = tm.make_categorical(1000, 10, 13, False)
reg = xgb.XGBRegressor(tree_method=tree_method, enable_categorical=True)
reg.fit(X, y)
with pytest.raises(ValueError, match="doesn't"):
reg.get_booster().get_split_value_histogram("3", bins=5)
def test_split_value_histograms(self):
self.run_split_value_histograms("approx")